A macronutrient composition and physicochemical characteristics of colored Trigona honey from Tesso Nilo National Park, Riau

Devi Nurhalida Simanullang, Rini Hafzari, Endang Sulistyarini Gultom, DOI: 10.46793/BiolNyss.16.1.29S

Abstract


Trigona honey, produced by stingless bees, exhibits unique physicochemical characteristics influenced by environmental factors, nectar sources, and processing methods. This study investigates the relationship between honey color variation (yellow, red, and black) and its macronutrient composition and physicochemical properties, including moisture content, fat, protein, carbohydrate, and acidity levels, using standard laboratory methods. The findings reveal significant differences in composition among the samples, with black honey having the lowest moisture content (19.4%) and the highest acidity (134 mL NaOH/kg), suggesting better stability and potential bioactive properties, while yellow honey had the highest moisture content (24.1%), making it more susceptible to fermentation. Carbohydrate content was highest in red honey (37.3%), indicating its potential as an energy source. No protein was detected in any sample, and fat content ranged from 0.21% to 0.64%. The results suggest that darker-colored honey may contain higher levels of phenolic and flavonoid compounds, contributing to enhanced antioxidant and antimicrobial activity. This study underscores the importance of characterizing Trigona honey for quality control, standardization, and potential applications in the food and pharmaceutical industries. Further research is recommended to explore the functional properties of Trigona honey, particularly its bioactive and therapeutic potential.


Keywords


trigona honey, macronutrient composition, honey color, bioactive compounds

Full Text:

PDF

References


Alvarez-Suarez, J. M., Giampieri, F., & Battino, M. (2013). Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Current Medicinal Chemistry, 30, 621–638. https://doi.org/10.2174/0929867311320050005

Andrade Velásquez, A., Hernandez, H., Dorantes-Álvarez, L., Palmeros-Sánchez, B., Torres-Moreno, R., Hernández-Rodríguez, D., & Melgar-Lalanne, G. (2023). Honey characterization and identification of fructophilic lactic acid bacteria of fresh samples from Melipona beecheii, Scaptotrigona pectoralis, Plebeia llorentei, and Plebeia jatiformis hives. Frontiers in Sustainable Food Systems, 7, 1113920. https://doi.org/10.3389/fsufs.2023.1113920

Braghini, F., Biluca, F.C., Ottequir, F., Gonzaga, L.V., da Silva, M., Vitali, L., Gonzales, G.B., & Fett, R. (2020). Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys. LWT - Food Science and Technology, 131, 109724. https://doi.org/10.1016/j.lwt.2020.109724

Cianciosi, D., Forbes-Hernández, T.Y., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P.P., Zhang, J., Lamas, L.B., Martínez Espinosa, J.C., Bompadre, S., Quiles, J.L., & Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322. https://www.mdpi.com/1420-3049/23/9/2322

da Silva, R.N.A., Magalhães-Guedes, K.T., de Souza, C.O., de Oliveira Alves, R.M., & Umsza-Guez, M.A. (2024). Microbiological and physical-chemical characteristics of pollen and honey from stingless bees: A review. Food Production, Processing and Nutrition, 6(1), 95. https://doi.org/10.1186/s43014-024-00268-y

Evahelda, E., Pratama, F., Malahayati, N., & Santoso, B. (2017). Sifat fisik dan kimia madu dari nektar pohon karet di Kabupaten Bangka Tengah, Indonesia. Agritech, 37(4). [bez DOI]

Gadge, A.S., Shirsat, D.V., Soumia, P.S., Pote, C.L., Pushpalatha, M., Pandit, T.R., Sangamesh, B.K., Kulkarni, D.D., & Karuppaiah, V. (2024). Physiochemical, biological, and therapeutic uses of stingless bee honey [Review]. Frontiers in Sustainable Food Systems, 7, 1–16. https://doi.org/10.3389/fsufs.2023.1324385

Hadagali, M.D., & Chua, L.S. (2014). The anti-inflammatory and wound healing properties of honey. European Food Research and Technology, 239(6), 1003–1014. https://doi.org/10.1007/s00217-014-2297-6

Hakim, S., Wahyuningtyas, R., Rahmanto, B., Halwany, W., Lestari, F., Penelitian, B., Khasanah, A.U., & Siswadi, S. (2021). Sifat fisikokimia dan kandungan mikronutrien pada madu kelulut (Heterotrigona itama) dengan warna berbeda (Physico-chemistry and micronutrient contents of different colour Kelulut honey bee (Heterotrigona itama)). Jurnal Penelitian Hasil Hutan, 39, 1–12. https://doi.org/10.20886/jphh.2021.39.3.1-12

Hasan, A.E.Z., Safira, U.M., Purnamasari, A., & Wardatun, S. (2023). Antioxidant activity and total flavonoid of propolis stingless bee. Journal Agroindustri Halal, 9(2), 149–157. https://doi.org/10.30997/jah.v9i2.6818

Ikhsan, L.N., Chin, K.Y., & Ahmad, F. (2022). Methods of the dehydration process and its effect on the physicochemical properties of stingless bee honey: A review. Molecules, 27(21), 7243. https://www.mdpi.com/1420-3049/27/21/7243

Kamal, D.A.M., Ibrahim, S.F., Ugusman, A., Zaid, S.S.M., & Mokhtar, M.H. (2022). Kelulut honey improves folliculogenesis, steroidogenic, and aromatase enzyme profiles and ovarian histomorphology in letrozole-induced polycystic ovary syndrome rats. Nutrients, 14(20). https://doi.org/10.3390/nu14204364

Kek, S.P., Chin, N.L., Tan, S.W., Yusof, Y.A., & Chua, L.S. (2017). Classification of honey from its bee origin via chemical profiles and mineral content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161-016-0544-0

Khalil, M., Motallib, M., Anisuzzaman, A.S.M., Sathi, Z., Hye, M., & Shahjahan, M. (2001). Biochemical analysis of different brands of unifloral honey available at the Northern region of Bangladesh. Journal of Medical Sciences, 1, 385–388. https://doi.org/10.3923/jms.2001.385.388

Luca, L., Pauliuc, D., Ursachi, F., & Oroian, M. (2025). Physicochemical parameters, microbiological quality, and antibacterial activity of honey from the Bucovina region of Romania. Scientific Reports, 15(1), 4358. https://doi.org/10.1038/s41598-025-88613-0

Mahani, Ferdian, P.R., Ghibran, H.M., Herlina, A.F., Nurhasanah, S., Nurjanah, N., … Samudra, I.M. (2025). A report on the physicochemical and antioxidant properties of three Indonesian forest honeys produced by Apis dorsata. Food Chemistry: X, 25, 102156. https://doi.org/10.1016/j.fochx.2025.102156

Manickavasagam, G., Saaid, M., & Lim, V. (2024). Impact of prolonged storage on quality assessment properties and constituents of honey: A systematic review. Journal of Food Science, 89(2), 811–833. https://doi.org/10.1111/1750-3841.16921

Olas, B. (2020). Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients, 12(2), 283. https://doi.org/10.3390/nu12020283

Pimentel, T.C., Rosset, M., de Sousa, J.M.B., de Oliveira, L.I.G., Mafaldo, I.M., Pintado, M.M.E., … Magnani, M. (2022). Stingless bee honey: An overview of health benefits and main market challenges. Journal of Food Biochemistry, 46(3), e13883. https://doi.org/10.1111/jfbc.13883

Sawarkar, A.B. (2024). Color intensity and antioxidant properties of honey produced from North Maharashtra, India. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-024-06170-2

Suhri, A.G.M.I., & Bahar, I. (2023). Water content of stingless bee honey varies by season. Jurnal Biologi Tropis, 23(2), 16–22. https://doi.org/10.29303/jbt.v23i2.4651

Susilawati, N., Sudaryati, N., & Sudiartawan, I.P. (2023). Honey purity analysis of Trigona sp. species in Royal Honey Sakah, Bali. Jurnal Sains dan Kesehatan, 5, 358–365. https://doi.org/10.25026/jsk.v5i3.1550

Vîjan, L.E., Mazilu, I.C., Enache, C., Enache, S., & Topală, C.M. (2023). Botanical origin influence on some honey physicochemical characteristics and antioxidant properties. Foods, 12(11), 2134. https://www.mdpi.com/2304-8158/12/11/2134

Zaldivar-Ortega, A.K., Cenobio-Galindo, A.D.J., Morfin, N., Aguirre-Álvarez, G., Campos-Montiel, R.G., Esturau-Escofet, N., … Angeles-Hernandez, J.C. (2024). The physicochemical parameters, phenolic content, and antioxidant activity of honey from stingless bees and Apis mellifera: A systematic review and meta-analysis. Antioxidants, 13(12), 1539. https://www.mdpi.com/2076-3921/13/12/1539

Zulkifli, N.A., Hassan, Z., Mustafa, M.Z., Azman, W.N.W., Hadie, S.N.H., Ghani, N., & Mat Zin, A.A. (2023). The potential neuroprotective effects of stingless bee honey [Review]. Aging Neuroscience, 14. https://doi.org/10.3389/fnagi.2022.1048028


Refbacks

  • There are currently no refbacks.