Different types of crystalluria in patients with bone and joint tissue pathology: Hematological and biochemical profiles

Pavlo Grigorovich Kravchun, Inna Pavlivna Dunayeva, Frida Solomonivna Leontyeva, Olena Dmytrivna Povelychenko, Valentyna Yuriivna Dielievska

Abstract


Crystalluria, as a sign of dysmetabolic nephropathy, has been associated with bone and joint tissue pathology. The aim of the study was to reveal the structure of crystalluria in patients with bone and joint tissue pathology and to investigate the characteristics of biochemical parameters according to the type of dysmetabolic nephropathy. In this study, common blood analyses and biochemical parameters were investigated. Individuals with bone and joint tissue pathology demonstrated prevalence of hyperoxaluria (59%) with less frequency of uraturia (25.7%) and phosphaturia (15.1%). Hyperoxaluria was associated with high incidence of ligamentum ruptures and bone fractures (21.6%). The patients with hyperoxaluria showed presence of eosinophilia, increased levels of platelets, leukocytes, erythrocyte sedimentation rate, C-reactive protein and serum alkaline phosphatase, whereas the patients with uraturia demonstrated decreased level of platelets and increased level of serum glucose, uric acid and creatinine. Patients with phosphaturia demonstrated increased serum alanine aminotransferase. The results presented in this paper revealed the differences in biochemical parameters of patients with different types of crystalluria, suggesting the necessity of its control to improve the prognosis of the treatment of patients with bone and joint tissue pathology.


Keywords


calcium, joint, oxalates, urates, urea

Full Text:

PDF

References


Alan, H. B. Wu. (2006). Tietz clinical guide to laboratory tests (4th ed.). 1857 p.

Anothaisintawee, T., Lertrattananon, D., Thamakaison, S., Reutrakul, S., Ongphiphadhanakul, B., Thakkinstian, A. (2017). Direct and indirect effects of serum uric acid on blood sugar levels in patients with prediabetes: A mediation analysis. Journal of Diabetes Research, 2017, 6830671. https://doi.org/10.1155/2017/6830671

Bacchetta, J., Boivin, G., Cochat, P. (2016). Bone impairment in primary hyperoxaluria: A review. Pediatric Nephrology, 31, 1–6. https://doi.org/10.1007/s00467-015-3048-z

Başoğlu, I. A., Karakoyun, B. (2023). Crohn’s disease: Etiology, pathogenesis and treatment strategies. Marmara Medical Journal, 36(2), 249–254. https://doi.org/10.5472/marumj.1307982

Bchir, S., Salem, M. B., Manaa, R., Aloui, S. (2022). POS-433 systemic manifest antigens of primary hyperoxaluria in adult patients: A monocentric Tunisian study. Kidney International Reports, 7(2), S193. https://doi.org/10.1016/j.ekir.2022.01.460

Ben-Shalom, E., Cytter-Kuint, R., Rinat, C., Becker-Cohen, R., Tzvi-Behr, S., Goichberg, J., Peles, V., Frishberg, Y. (2021). Long-term complications of systemic oxalosis in children: A retrospective single-center cohort study. Pediatric Nephrology, 36(10), 3123–3132. https://doi.org/10.1007/s00467-021-05002-1

Benson, J. C., Trejo-Lopez, J. A., Nassiri, A. M., Eschbacher, K., Link, M. J., Driscoll, C. L., Tiegs, R. D., Sfeir, J., DeLone, D. R. (2022). Phosphaturic mesenchymal tumor. American Journal of Neuroradiology, 43(6), 817–822. https://doi.org/10.3174/ajnr.A7513

Hoppe, B., Beck, B. B., Milliner, D. S. (2009). The primary hyperoxalurias. Kidney International, 75(12), 1264–1271. https://doi.org/10.1038/ki.2009.32

Burlaka, I. A., Mityuryayeva, I. O., Shevchenko, T. A., Kovalenko, V. M., Kovalenko, T. M., Kovalenko, M. M., Kovalenko, O. M. (2021). Clinical, laboratory, instrumental, anamnestic characteristics in children with type I diabetes mellitus and early stage of diabetic nephropathy. Global Pediatric Health, 8, 2333794X211063052. https://doi.org/10.1177/2333794X211063052

Büscher, R., Pape, L., Büscher, A. K. (2024). Bone health in children with primary hyperoxaluria type 1 following liver and kidney transplantation. Frontiers in Pediatrics, 12, 1353880. https://doi.org/10.3389/fped.2024.1353880

Chen, S., Guo, X., Yu, S., Sun, G., Yang, H., Li, Z., Li, L., Zhang, Y., Zhang, W. (2016). Association between serum uric acid and elevated alanine aminotransferase in the general population. International Journal of Environmental Research and Public Health, 13(9), 841. https://doi.org/10.3390/ijerph13090841

Colaci, C., Gambardella, M. L., Scarlata, G. G. M., Boccuto, L., Colica, C., Luzza, F., Scarpellini, E., Mendez-Sanchez, N., Abenavoli, L. (2024). Dysmetabolic comorbidities and non-alcoholic fatty liver disease: A stairway to metabolic dysfunction-associated steatotic liver disease. Hepatoma Research, 10, 16. https://doi.org/10.20517/2394-5079.2023.134

Cooper, M. S., Gittoes, N. J. (2008). Diagnosis and management of hypocalcaemia. BMJ, 336(7656), 1298–1302. https://doi.org/10.1136/bmj.39582.589433.BE

De Jong, J.G.N., Wevers, R.A., Lefeber, D.J. (1989). Dimethylmethylene blue-based spectrophotometric assay for glycosaminoglycans: application in mucopolysaccharidosis screening. Clinical Chemistry, 35(8), 1472–1476. PMID: 2667889

Demoulin, N., Aydin, S., Gillion, V., Morelle, J., Jadoul, M. (2022). Pathophysiology and management of hyperoxaluria and oxalate nephropathy: A review. American Journal of Kidney Diseases, 79(5), 717–727. https://doi.org/10.1053/j.ajkd.2021.07.018

El Hage, S., Ghanem, I., Baradhi, A., Mourani, C., Mallat, S., Dagher, F., Kharrat, K. (2008). Skeletal features of primary hyperoxaluria type 1, revisited. Journal of Children's Orthopaedics, 2(3), 205–210. https://doi.org/10.1007/s11832-008-0082-4

Gapparova, G. N., & Utamurodova, N. A. (2023). Clinical and laboratory features of nephropathy in children with diabetes mellitus. JournalNX – A Multidisciplinary Peer Reviewed Journal, 9(2), 116–122. https://doi.org/10.17605/OSF.IO/2SFZG

Grover, P. K., & Ryall, R. L. (1999). Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: Relationship between protein structure and inhibitory activity. European Journal of Biochemistry, 263(1), 50–56. https://doi.org/10.1046/j.1432-1327.1999.00448.x

Guo, S., Wang, M., Yu, Y., Li, Y., & Wang, Y. (2020). The association of erythrocyte sedimentation rate, high-sensitivity C-reactive protein and diabetic kidney disease in patients with type 2 diabetes. BMC Endocrine Disorders, 20(1), 103. https://doi.org/10.1186/s12902-020-00584-7

Han, T., Chen, W., Qiu, X., & Wang, W. (2024). Epidemiology of gout: Global burden of disease research from 1990 to 2019 and future trend predictions. Therapeutic Advances in Endocrinology and Metabolism, 15, 20420188241227295. https://doi.org/10.1177/20420188241227295

Hassona, Y., Hassan, S., Atef, A., Abou-Elezz, A., & Ghallab, N. A. (2024). Primary hyperoxaluria: Description of a new oral finding and review of literature. Special Care in Dentistry, 44(4), 1041–1048. https://doi.org/10.1111/scd.12968

Hesse, A., Wuzel, H., & Vahlensieck, W. (1991). Significance of glycosaminoglycans for the formation of calcium oxalate stones. American Journal of Kidney Diseases, 17(4), 414–419. https://doi.org/10.1016/S0272-6386(12)80634-2

Horta-Baas, G., Vargas-Gutiérrez, C., & Barile-Fabris, L. (2013). Large joint destructive arthropathy and tumoral calcinosis associated to primary oxalosis: Case report and literature review. Reumatología Clínica, 9(3), 181–185. https://doi.org/10.1016/j.reuma.2012.09.009

Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., & Kim, H.-S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors, 6, 756–782. https://doi.org/10.3390/s6070756

Ibrahim, W. N., Younes, N., Shi, Z., & Abu-Madi, M. A. (2021). Serum uric acid level is positively associated with higher bone mineral density at multiple skeletal sites among healthy Qataris. Frontiers in Endocrinology, 12, 653685. https://doi.org/10.3389/fendo.2021.653685

İzki, A. A., Yılmaz, H., & Göksu, H. (2024). Evaluation of balance disorder and associated factors in patients with ankylosing spondylitis. Marmara Medical Journal, 37(3), 332–337. https://doi.org/10.5472/marumj.1573709

Joshi, S., Clapp, W. L., Wang, W., & Khan, S. R. (2015). Osteogenic changes in kidneys of hyperoxaluric rats. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1852(9), 2000–2012. https://doi.org/10.1016/j.bbadis.2015.06.020

Kim, S., Lee, S., & Kwon, H. (2023). Association between serum uric acid level and bone mineral density in men more than 50 years of age. Frontiers in Endocrinology, 14, 1259077. https://doi.org/10.3389/fendo.2023.1259077

Ibrahim, W. N., Younes, N., Shi, Z., & Abu-Madi, M. A. (2021). Serum uric acid level is positively associated with higher bone mineral density at multiple skeletal sites among healthy Qataris. Frontiers in Endocrinology, 12, 653685. https://doi.org/10.3389/fendo.2021.653685

Lin, K. M., Lu, C. L., Hung, K. C., Huang, Y. C., & Huang, Y. T. (2019). The paradoxical role of uric acid in osteoporosis. Nutrients, 11(9), 2111. https://doi.org/10.3390/nu11092111

Li, Y., Tan, J., Tian, J., Zhao, J., Zhou, Y., & Shi, Y. (2023). Cross-sectional analysis of the correlation between serum uric acid and trabecular bone score: NHANES 2005–2008. Scientific Reports, 13, 21546. https://doi.org/10.1038/s41598-023-48739-5

Kuwabara, M., Fukuuchi, T., Aoki, Y., Uesugi, T., Nakagawa, T., & Kanbay, M. (2023). Exploring the multifaceted nexus of uric acid and health: A review of recent studies on diverse diseases. Biomolecules, 13(10), 1519. https://doi.org/10.3390/biom13101519

Lalayiannis, A. D., Soeiro, E. M. D., Moysés, R. M. A., & Shroff, R. (2024). Chronic kidney disease mineral bone disorder in childhood and young adulthood: A ‘growing’ understanding. Pediatric Nephrology, 39(3), 723–739. https://doi.org/10.1007/s00467-023-06109-3

Langenfeld, N. J., Payne, L. E., & Bugbee, B. (2021). Colorimetric determination of urea using diacetyl monoxime with strong acids. PLOS ONE, 16(11), e0259760. https://doi.org/10.1371/journal.pone.0259760

Li, Y., Tan, J., Tian, J., Zhou, Y., & Shi, Y. (2023). Cross-sectional analysis of the correlation between serum uric acid and trabecular bone score: NHANES 2005–2008. Scientific Reports, 13, 21546. https://doi.org/10.1038/s41598-023-48739-5

Lin, K. M., Lu, C. L., Hung, K. C., Huang, Y. C., & Huang, Y. T. (2019). The paradoxical role of uric acid in osteoporosis. Nutrients, 11(9), 2111. https://doi.org/10.3390/nu11092111

Liu, L., Shao, Y., Li, X., Sun, J., & Xing, D. (2022). Individual and combined relationship of serum uric acid and alanine aminotransferase on metabolic syndrome in adults in Qingdao, China. Nutrition, Metabolism and Cardiovascular Diseases, 32(12), 2822–2829. https://doi.org/10.1016/j.numecd.2022.08.014

Liu, Y., Zhao, Y., Shukla, Y., Tan, W., Wang, Y., & Tang, H. (2021). Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Reports, 36(4), 109420. https://doi.org/10.1016/j.celrep.2021.109420

Mitri, Z., & Tangpricha, V. (2012). Osteopetrosis, hypophosphatemia, and phosphaturia in a young man: a case presentation and differential diagnosis. Case Reports in Endocrinology, 2012, 238364. https://doi.org/10.1155/2012/238364

Moya, F.J., Rodríguez-Perales, S., García-Escudero, R., Nieto-Romero, V., Garcia-Torralba, A., Molinos-Vicente, A., Salido, E., Segovia, J.C., & Garcia-Bravo, M. (2024). Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience, 27(4), 109530. https://doi.org/10.1016/j.isci.2024.109530

National Center for Biotechnology Information. (2025). PubChem Compound Summary for CID 971, Oxalic Acid. Retrieved February 24, 2025, from https://pubchem.ncbi.nlm.nih.gov/compound/Oxalic-Acid

Nazzal, L., Francois, F., Henderson, N., Li, X., & Asplin, J.R. (2021). Effect of antibiotic treatment on Oxalobacter formigenes colonization of the gut microbiome and urinary oxalate excretion. Scientific Reports, 11, 16428. https://doi.org/10.1038/s41598-021-95992-7

Qian, X., Wan, J., Xu, J., Liu, C., Zhong, M., Zhang, J., Zhang, Y., & Wang, S. (2022). Epidemiological trends of urolithiasis at the global, regional, and national levels: A population-based study. International Journal of Clinical Practice, 2022, 6807203. https://doi.org/10.1155/2022/6807203

Rabinovitch, A., Arzoumanian, L., Curcio, K.M., Dougherty, B., Halim, A. (2009). Urinalysis: approved guideline, 3rd ed. Clinical and Laboratory Standards Institute, 29(4), 41 p.

Ritgen, U. (2023). Analytical chemistry. Springer, 308 p.

Sarısoy, Ö., Arıcı, Ş., Demirci Bodur, E., Tezel, O., Alpay, H., Akalın, F. (2024). Is aortic elasticity associated with hydration status in stage of chronic renal disease in children? Marmara Medical Journal, 37(3), 311–317. doi: 10.5472/marumj.1573657

Seker, A., Gogas Yavuz, D. (2024). Bone mineral density in patients with Cushing’s syndrome. Marmara Medical Journal, 37(2), 185–191.

Shastri, S., Patel, J., Sambandam, K.K., Lederer, E.D. (2023). Kidney stone pathophysiology, evaluation and management: core curriculum. American Journal of Kidney Diseases, 82(5), 617–634. doi: 10.1053/j.ajkd.2023.03.017

Shtenberg, O.P. (1962). Determination of glycoproteins in blood serum. Doctor's Case, 12, 43–45.

Sun, Y., Horowitz, B.L., Servilla, K.S., Fair, J.R. (2017). Chronic nephropathy from dietary hyperoxaluria: sustained improvement of renal function after dietary intervention. Cureus, 9(3), e1105. doi: 10.7759/cureus.1105

Țăpoi, L., Șalaru, D.L., Sascău, R., Stătescu, C. (2021). Uric acid—An emergent risk marker for thrombosis? Journal of Clinical Medicine, 10(10), 2062. doi: 10.3390/jcm10102062

Tayefi, M., Hassanian, S.M., Maftouh, M., Moohebati, M., Bahrami, A., Parizadeh, S.M., Mahdizadeh, A., Ghazizadeh, H., Bazeli, J., Heidari-Bakavoli, A. (2018). Relationship between platelet count and platelet width distribution and serum uric acid concentrations in patients with untreated essential hypertension. BioFactors, 44(6), 532–538. doi: 10.1002/biof.1453

Toora, B.D., Rajagopal, G. (2002). Measurement of creatinine by Jaffe's reaction—determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian Journal of Experimental Biology, 40(3), 352–354. PMID: 12635710

Verdesca, S., Fogazzi, G.B., Garigali, G., Messa, P., Daudon, M. (2011). Crystalluria: prevalence, different types of crystals and the role of infrared spectroscopy. Clinical Chemistry and Laboratory Medicine, 49(3), 515–520. doi: 10.1515/CCLM.2011.078

Wang, X., Zhong, S., Guo, X. (2022). The associations between fasting glucose, lipids and uric acid levels strengthen with the decile of uric acid increase and differ by sex. Nutrition, Metabolism and Cardiovascular Diseases, 32(12), 2786–2793. doi: 10.1016/j.numecd.2022.09.004

Wang, Z., Zhang, Y., Zhang, J., Deng, Q., Liang, H. (2021). Recent advances on the mechanisms of kidney stone formation (Review). International Journal of Molecular Medicine, 48(2), 149. doi: 10.3892/ijmm.2021.4982

Wardhana, W., Rudijanto, A. (2018). Effect of uric acid on blood glucose levels. Acta Medica Indonesiana, 50(3), 253–256. PMID: 30333276

Weng, H., Li, H., Zhang, Z., et al. (2023). Association between uric acid and risk of venous thromboembolism in East Asian populations: a cohort and Mendelian randomization study. The Lancet Regional Health – Western Pacific, 39, 100848. doi: 10.1016/j.lanwpc.2023.100848

Yan, D.D., Wang, J., Hou, X.H., et al. (2018). Association of serum uric acid levels with osteoporosis and bone turnover markers in a Chinese population. Acta Pharmacologica Sinica, 39(4), 626–632. doi: 10.1038/aps.2017.165

Yang, C., Wu, S., Lan, Y., et al. (2023). Association between blood calcium, magnesium, and non-alcoholic fatty liver disease in adults: a cohort-based case-control study. Biological Trace Element Research, 201(10), 4625–4636. doi: 10.1007/s12011-022-03543-6

Yang, R., Ding, N., Qin, J., Peng, H. (2024). The relationship between uric acid and bone mineral density in the intermediate stage of CKD 1–3. BMC Nephrology, 25(1), 219. doi: 10.1186/s12882-024-03650-7

Zechner, C., Adams-Huet, B., Gregory, B., Neyra, J.A., Rule, J.A., Li, X., Rakela, J., Moe, O.W., Lee, W.M. (2021). Hypophosphatemia in acute liver failure of a broad range of etiologies is associated with phosphaturia without kidney damage or phosphatonin elevation. Translational Research, 238, 1–11. doi: 10.1016/j.trsl.2021.07.003


Refbacks

  • There are currently no refbacks.