Inequalities of generalized Euclidean Berezin number

Fengsheng Chien, Eman F.Mohommed, Monire Hajmohamadi, Rahmatollah Lashkaripour

Abstract


In this paper, we present several Berezin number inequalities involving extensions of Euclidean Berezin number for n operators. Among other inequalities for $(T_{1},\ldots,T_{n})\in{\mathbb B}(\mathcal H)$ we show that
\begin{align*}
\textbf{ber}_{\textbf{p}}^{p}(T_{1},\ldots,T_{n})\leq\frac{1}{2^{p}}\textbf{ber}\left(\sum_{i=1}^{n}(|T_{i}|+
|T_{i}^{*}|)^{p}\right),
\end{align*}
where $p>1$.


Refbacks

  • There are currently no refbacks.