SOME PROPERTIES OF THE M−ESSENTIAL SPECTRA OF CLOSED LINEAR OPERATOR ON A BANACH SPACE
Abstract
In this paper, we study a detailed treatment of some subsets of M-essential
spectra of closed linear operators subjected to additive perturbations not necessarily belonging
to any ideal of the algebra of bounded linear operators and we investigate some
properties of the M-essential spectra of 2 × 2 matrix operator acting on a Banach space.
This study led us to generalize some well known results for essential spectra of closed
linear operator.
Full Text:
PDFReferences
References
A. Ammar, B. Boukettaya and A. Jeribi, Stability of the S-left and S-right essential
spectra of a linear operator. Acta Math. Sci. Ser. B Engl. Ed. 34 , no. 6, 1922-1934
(2014).
F. Abdmouleh, A. Ammar and A. Jeribi, Stability of the S-essential spectra on a
Banach space. Math. Slovaca 63, no. 2, 299-320 (2013).
I. Gohberg, A. Markus and I. A. Feldman, Normally solvable operators and ideals
associated with them, Amer. Math. Soc. Transl. Ser. 2 61, 63-84(1967).
S. Goldberg, Unbounded Linear Operators. New York: McGraw-Hill, 1966.
K. Gustafson, J. Weidmann, On the essential spectrum. J. Math. Anal. App. 25,
-127(1969).
A. Jeribi, Quelques remarques sur le spectre de Weyl et applications, C. R. Acad. Sci.
Paris Sér. I Math. 327, no. 5, 485-490.(1998).
A. Jeribi, Une nouvelle caracterisation du spectre essentiel et application, C. R.
Acad. Sci. Paris Sér. I Math. 331, no. 7, 525-530(2000).
A. Jeribi, A characterization of the essential spectrum and applications. Boll. Unione
Mat. Ital. Sez. B Artic. Ric Mat. (8) 5, 805-825(2002).
A. Jeribi, Some remarks on the Schechter essential spectrum and applications to
transport equations. J. Math. Anal. App. 275, 222-237(2002).
A. Jeribi and N. Moalla, A characterization of some subsets of Schechter's essential
spectrum and application to singular transport equation, J. Math. Anal. Appl., (358)
no. 2, 434444(2009).
T. Kato , Perturbation theory for nullity, deciency and other quantities of linear
operators. J. Anal. Math. 6, 261-322 1958.
T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen
Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York 1966.
A. S. Markus, Introduction to the spectral theory of polynomial operator pencils.
American Mathematical Society, Providence, RI . iv+250 pp. ISBN: 0-8218-4523-
(1988).
A. Jeribi and N. Moalla, A characterization of some subsets of Schechter's essential
spectrum and application to singular transport equation, J. Math. Anal. Appl., 358,
-444, (2009).
A. Pelczynski, Strictly singular and strictly cosingular operators. I. Strictly singular
and strictly cosingular operators on C(
)-spaces, Bull. Acad. Polon. Sci. 31-36(1965).
V. Rako˜cevi´c, On one subset of M. Schechter's Essential Spectrum. Math. Vesnuk 5,
-391(1981).
V. Rako˜cevi´c, Approximate point spectrum and commuting compact perturbations,
Glasgow Math. J. 28, 193-198(1986).
M. Schechter, Spectra of partial dierential operators, North-Holland, Amsterdam.
New York. Oxford, 1986.
M. Schechter, Principles of functionnal Analysis, Academic Press, New York, 1971.
M. Schechter, Principles of functionnal Analysis, Grad. Stud. Math., 36, Amer.
Math. Soc., Providence, RI, 2002.
A. A. Shkalikov, On the essential spectrum of some matrix operators, Math. Notes,
, no. 5-6, 1359-1362 (1995).
C. Schmoeger, The spectral mapping theorem for the essential approximate point
spectrum. Colloq. Math. 74, no. 2, 167176(1997).
Ju. I. Vladimirskii, Strictly cosingular operators, Soviet. Math. Dokl. 8, 739-
(1967).
Refbacks
- There are currently no refbacks.