Extended Rako\v{c}evi\'{c}'s property

Kaoutar Ben Ouidren, ZARIOUH Hassan


The purpose of this paper is to introduce and study new extension of Rako\v{c}evi\'{c}'s property $(w)$ and property $(b)$ introduced by Berkani--Zariouh in \cite{berkani-zariouh1}, in connection with other Weyl type theorems and recent properties. We prove in particular, the two following results: \\
1. A bounded linear operator $T$ satisfies property $(w_{\pi_{00}})$ if and only if $T$ satisfies property $(w)$ and $\sigma_{uf}(T)=\sigma_{uw}(T).$\\
2. $T$ satisfies property $(gw_{\pi_{00}})$ if and only if $T$ satisfies property $(w_{\pi_{00}})$ and $\pi_{0}(T)=p_{0}^a(T).$ Classes of operators are considered as illustrating examples.


bibitem{aiena1} P. Aiena, {it Fredholm and Local Spectral Theory II, with Application to Weyl-type Theorems},

Springer Lecture Notes of Math no. 2235, (2018).

bibitem{amouch-berkani} M. Amouch and M. Berkani, {it On the property $(gw)$},

Mediterr. J. Math., {bf 5} (2008), 371--378.

bibitem {amuch-zguitti} M. Amouch, H. Zguitti, {it On the equivalence of

Browder's and generalized Browder's theorem}, Glasgow Math. J., {bf

} (2006), 179--185.

bibitem{kaoutar-zariouh} K. Ben Ouidren, H. Zariouh, {it New approach to a-Weyl's theorem and some preservation results}, Rend. Circ. Mat. Palermo, (2020), (DOI: 10.1007/s12215-020-00525-2).

bibitem{Berkani-koliha} M. Berkani and J. J. Koliha, {it Weyl type theorems for bounded linear operators}, Acta Sci. Math. (Szeged), {bf 69}

(2003), 359--376.

bibitem{berkani-sarih} M. Berkani and M. Sarih, {it On semi B-Fredholm operators}, Glasg. Math. J., {bf 43}

(2001), 457--465.

bibitem{berkani-sarih-zariouh} M. Berkani, M. Sarih and H. Zariouh, {it Browder-type theorems and SVEP}, Mediterr. J. Math., {bf 8}

(2011), 399--409.

bibitem {berkani-zariouh1} M. Berkani, H. Zariouh, {it Extended Weyl type

theorems}, Math. Bohemica, {bf 134} (2009), 369--378.

bibitem{rakocevic} V. Rakov{c}evi'{c}'s, {it On a class of operators},

Mat. Vesnik, {bf 37} (1985), 423--426.

bibitem{rakocevic1} V. Rakov{c}evi'{c}, {it Operators obeying a-Weyl's theorem}, Rev. Roumaine Math. Pures Appl.,

{bf 34} (1989), 915--919.


  • There are currently no refbacks.