### Perturbed Browder, Weyl theorems and their variations: An addendum

#### Abstract

We generalize some results of Zariouh \cite{Za2} on properties $(\bf{Z}_{\Pi^a})$ and $(\bf{Z}_{E^a})$ from the direct sum $A\oplus B$ (of Banach space operators $A, B$) to upper triangular matrix operators with main diagonal $\{A, B\}$ and answer two questions from \cite{Za2}, one of them affirmatively and the other in the negative.

#### Full Text:

PDF#### References

bibitem{A} P. Aiena, Fredholm and Local Spectral Theory

with Applications to Multipliers, Kluwer, 2004.

bibitem{BM} M. Berkani and D. Medkova, {em A note on the index of B-Fredholm operators},

Math. Bohemica {bf 29}(2004), 177-180.

bibitem{BS1} M. Berkani and M. Sarih, {em On semi B-Fredholm operators},

Glasgow Math. J. {bf 43}(2001), 457-465.

bibitem{BS2} M. Berkani and M. Sarih, {em An Atkinson-type theorem for B-Fredholm operators},

Studia Math. {bf 148}(2001), 251-257.

bibitem{DDC} B.P. Duggal, S.V. Djordjevic and M. Cho, {em The Browder and Weyl spectra of an operator and its diagonal},

Functional Analysis, Approximation and Computation {bf 1}:2(2009), 7-18.

bibitem{D1} B. P. Duggal, {em Spectral picture, perturbed Browder and Weyl theorems, and their variations}, Functional Analysis, Approximation and Computation {bf 9}:1(2017), 1-23.

bibitem{D2} B. P. Duggal, {em Perturbed Browder and Weyl theorems, and their variations: Equivalences},

Functional Analysis, Approximation and Computation {bf 9}:2(2017), 37-62.

bibitem{Gr} S. Grabiner, {em Uniform ascent and descent of bounded

operators}, J. Math. Soc. Japan {bf 34}(1982), 317-337.

bibitem{H} H. G. Heuser, Functional Analysis, John Wiley and Sons (1982).

bibitem{LN} K.B. Laursen and M.M. Neumann, Introduction to Local Spectral

Theory, Clarendon Press, Oxford, 2000.

bibitem{TL} A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley and Sons, 1980.

bibitem{Za1} H. Zariouh, {em On the property $(bf{{Z}_{E_a}})$}, Rend. Mat. Circ. Palermo {bf 65}(2016), 323-331.

bibitem{Za2} H. Zariouh, {em Property $(bf{Z_{E_a}})$ for direct sums}, Functional Analysis, Approximation and Computation {bf 10}:1(2018), 1-7.

### Refbacks

- There are currently no refbacks.