Assessment of the cytostatic, cytotoxic and antibacterial potential of aluminium (III) chloride hexahydrate

Džana Kuna, Irma Mahmutović-Dizdarević, Renata Bešta-Gajević, Aner Mesic

Abstract


Even though aluminium does not participate in any known biochemical process in living organisms, it is omnipresent in various products intended for human consumption. This study aimed to evaluate the cytostatic and cytotoxic effects of aluminium (III) chloride hexahydrate (AlCl3) in cultured human peripheral blood lymphocytes, as well as its antimicrobial potential using agar diffusion method. Our results showed a significant deviation in the mitotic index (MI) values between 2.20, 2.40 and 2.50% of AlCl3 and control group. MI value decreased with an increase in the concentration of AlCl3. An increased frequency of apoptotic cells at all concentrations of the AlCl3 was detected, whereby the significantly higher frequency of apoptotic cells was detected between 2.20 and 2.30% AlCl3 and the control group. Staphylococcus aureus and Escherichia coli were resistant to the tested compound. Inhibition zones detected in Bacillus subtilis and Pseudomonas aeruginosa were 13.67±0.58 mm at 1 mg/ml, 12.00±0.00 mm at 10 mg/ml; and 13.00±0.00 mm at 1 mg/ml, and 14.67±0.58 mm et 10 mg/ml, respectively. Our results indicate that AlCl3 possesses antiproliferative and apoptosis-inducing potential. Discrete antibacterial effects were demonstrated. Further studies are needed to strengthen these findings.


Keywords


aluminium (III) chloride hexahydrate, human lymphocytes, toxicological effects, antibacterial activity, agar diffusion method

Full Text:

PDF

References


Aguilar, T. N., Blaug, S. M., & Zopf, L. C. (1956). A study of the antibacterial activity of some complex aluminium salts. Journal of the American Pharmacists Association, 45(7), 498-500. https://doi.org/10.1002/jps.3030450720

Alfrey, A. C., LeGendre, G. R., & Kaehny, W. D. (1976). The dialysis encephalopathy syndrome. Possible aluminium intoxication. The New England Journal of Medicine, 294(4), 184-188. https://doi.org/10.1056/NEJM197601222940402

Al-Khikani, F. H. O., Zaraa, D. M., Abbas, H. S., Musa, H. S., Dahir, H. A., Musa, H. A. M., & Alhusayni, A. A. (2023). Evaluating the antibacterial activity of potassium aluminium sulphate (alum) combined with other antibiotics. Microbes and Infectious Diseases. https://doi.org/10.21608/mid.2023.206322.1514

Appanna, V. D., Kepes, M., & Rochon, P. (1994). Aluminium tolerance in Pseudomonas fluorescens ATCC 13525: Involvement of a gelatinous lipid-rich residue. FEMS Microbiology Letters, 119(3), 295-301. https://www.sciencedirect.com/science/article/pii/0378109794904316

Aras, A., Rizvanoglu, S. S., Tanriverdi, E. S., Karaca, B., & Eryilmaz, M. (2023). The effects of antiperspirant aluminium chlorohydrate on the development of antibiotic resistance in Staphylococcus epidermidis. Microorganisms, 11(4), 948. https://doi.org/10.3390/microorganisms11040948

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.j.2015.11.005

Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82(8), 493-512. https://doi.org/10.1007/s00204-008-0313-y

Blank, I. H., & Dawes, R. K. (1960). Antibacterial activity of weak solutions of aluminium salts. AMA Archives of Dermatology, 81(4), 565-569. https://doi.org/10.1001/archderm.1960.03730040069013

Bojić, A., Purenović, M., Kocić, B., Mihailović, D., & Bojić, D. (2002). The comparison of aluminium effects and uptake by Escherichia coli in different media. Central European Journal of Public Health, 10(1-2), 66-71.

Byers, B. R., Powell, M. V., & Lankford, C. E. (1967). Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. Journal of Bacteriology, 93(1), 286-294. https://doi.org/10.1128/jb.93.1.286-294.1967

Cornelis, P. (2008). Unexpected interaction of a siderophore with aluminium and its receptor. Journal of Bacteriology, 190(20), 6541-6543. https://doi.org/10.1128/jb.00954-08

Cromwell, H. W., & Leffler, R. (1942). Evaluation of “skin degerming” agents by a modification of the Price method. Journal of Bacteriology, 43, 51.

Darbre, P. D. (2001). Underarm cosmetics are a cause of breast cancer. European Journal of Cancer Prevention, 10(5), 389-393. https://doi.org/10.1097/00008469-200110000-00002

Darbre, P. D. (2016). Aluminium and the human breast. Morphologie, 100(329), 65-74. https://doi.org/10.1016/j.morpho.2016.02.001

Ellis, H. A., McCarthy, J. H., & Herrington, J. (1979). Bone aluminium in haemodialysed patients and in rats injected with aluminium chloride: relationship to impaired bone mineralisation. Journal of Clinical Pathology, 32(8), 832-844. https://doi.org/10.1136/jcp.32.8.832

European Committee on Antimicrobial Susceptibility Testing (2017). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf

Exley, C. (2013). Human exposure to aluminium. Environmental Science: Processes & Impacts Journal, 15(10), 1807-1816. https://doi.orgm00374d

Farh, M. E., Kim, Y. J., Sukweenadhi, J., Singh, P., & Yang, D. C. (2017). Aluminium resistant, plant growth promoting bacteria induce overexpression of aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiological Research, 200, 45-52. https://doi.org/10.1016/j.micres.2017.04.004

Ghssein, G., & Ezzeddine, Z. (2022). The key element role of metallophores in the pathogenicity and virulence of Staphylococcus aureus: A review. Biology (Basel), 11(10), 1525. https://doi.org/10.3390/biology11101525

Gómez-Herreros, F. (2019). DNA double strand breaks and chromosomal translocations induced by DNA topoisomerase II. Frontiers in Molecular Biosciences, 10(6), 141. https://doi.org/10.3389/fmolb.2019.00141

Gorgogietas, V. A., Tsialtas, I., Sotiriou, N., Laschou, V. C., Karra, A. G., Leonidas, D. D., Chrousos, G. P., Protopapa, E., & Psarra, A. G. (2018). Potential interference of aluminium chlorohydrate with estrogen receptor signaling in breast cancer cells. Journal of Molecular Biochemistry, 7(1), 1-13.

Guida, L., Saidi, Z., Hughes, M. N., & Poole, R. K. (1991). Aluminium toxicity and binding to Escherichia coli. Archives of Microbiology, 156(6), 507-512. https://doi.org/10.1007/BF00245400

Hazarika, D. J., Bora, S. S., Naorem, R. S., Sharma, D., Boro, R. C., & Barooah, M. (2023). Genomic insights into Bacillus subtilis MBB3B9 mediated aluminium stress mitigation for enhanced rice growth. Scientific Reports, 13, 16467. https://doi.org/10.1038/s41598-023-42804-9

Helmboldt, O., Keith Hudson, L., Misra, C., Wefers, K., Heck, W., Stark, H., Danner, M., & Rösch, N. (2007). “Aluminum Compounds, Inorganic.” Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007

Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. https://doi.org/10.1039/B906679A

Hirsch, E. C., Brandel, J. P., Galle, P., Javoy-Agid, F., & Agid, Y. (1991). Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis. Journal of Neurochemistry, 56(2), 446-451. https://doi.org/10.1111/j.1471-4159.1991.tb08170.x

Hu, X., & Boyer, G. L. (1996). Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Applied and Environmental Microbiology, 62(11), 4044-4048. https://doi.org/10.1128/aem.62.11.4044-4048.1996

Huang, W., Wang, P., Shen, T., Hu, C., Han, Y., Song, M., Bian, Y., Li, Y., & Zhu, Y. (2017). Aluminium trichloride inhibited osteoblastic proliferation and downregulated the wnt/β-catenin pathway. Biological Trace Element Research, 177(2), 323-330. https://doi.org/10.1007/s12011-016-0880-3

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. M. R. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16(12), 29592-29630. https://doi.org/10.3390/ijms161226183

Ji, B., Chen, W., Zhu, L., & Yang, K. (2016). Isolation of aluminium-tolerant bacteria capable of nitrogen removal in activated sludge. Marine Pollution Bulletin, 106(1-2), 31-34. https://doi.org/10.1016/j.marpolbul.2016.03.051

Katavic, S., Cehic, I., Zukic, N., Mirvic, M., Dizdar, M., Gutalj, A., Saric Medic, B., Jerković Mujkić, A., Mahmutović-Dizdarević, I., & Mesic, A. (2023). In vitro assessment of the antioxidative, toxicological and antimicrobial properties of battery of parabens. Drug and Chemical Toxicology, 19, 1-10. https://doi.org/10.1080/01480545.2023.2222928

Khazaal, M. T., El-Hendawy, H. H., Mabrouk, M. I., Faraag, A. H. I., & Bakkar, M. R. (2022). Antibiotic resistance and siderophores production by clinical Escherichia coli strains. BioTechnologia, 103(2), 169-184. https://doi.org/10.5114/bta.2022.116211

Labi, V., & Erlacher, M. (2015). How cell death shapes cancer. Cell Death & Disease, 6(3), e1675. https://doi.org/10.1038/cddis.2015.20

Linhart, C., Talasz, H., Morandi, E. M., Exley, C., Lindner, H. H., Taucher, S., Egle, D., Hubalek, M., Concin, N., & Ulmer, H. (2017). Use of underarm cosmetic products in relation to risk of breast cancer: A case-control study. EbioMedicine, 21, 79-85. https://doi.org/10.1016/j.ebiom.2017.06.005

Londono, S. C., Hartnett, H. E., & Williams, L. B. (2017). Antibacterial activity of aluminium in clay from the Colombian Amazon. Environmental Science & Technology, 51(4), 2401-2408. https://doi.org/10.1021/acs.est.6b04670

Maier, R. M. (2009). Bacterial Growth. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental Microbiology (pp. 37-54). Elsevier Inc.

Martinez-Finley, E. J., Chakraborty, S., Fretham, S. J. B., & Aschner, M. (2012). Cellular transport and homeostasis of essential and nonessential metals. Metallomics: Integrated biometal science, 4(7), 593-605. https://doi.org/10.1039/c2mt00185c

McGrath, K. G. (2003). An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. European Journal of Cancer Prevention, 12(6), 479-485. https://doi.org/10.1097/00008469-200312000-00006

Mittal, S., Meyer, J. M., & Goel, R. (2003). Isolation and characterization of aluminium and copper resistant ‘p’ solubilizing alkalophilic bacteria. Indian Journal of Biotechnology, 2(4), 583-586.

Moorhead, P. S., Nowell, P. C., Mellman, W. J., Battips, D. M., & Hungerford, D. A. (1960). Chromosome preparations of leukocytes cultured from human peripheral blood. Experimental Cell Research, 20(3), 613-616. https://doi.org/10.1016/0014-4827(60)90138-5

Mozumder, A. B., Chanda, K., Chorei, R., & Prasad, H. K. (2022). An evaluation of aluminium tolerant Pseudomonas aeruginosa A7 for in vivo suppression of fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris and growth promotion of chickpea. Microorganisms, 10(3), 568. https://doi.org/10.3390/microorganisms10030568

Piña, R. G., & Cervantes, C. (1996). Microbial interaction with aluminium. Biometals, 9(3), 311-316. https://doi.org/10.1007/BF00817932

Preston, S., Coad, N., Townend, J., Killham, K., & Paton, G. I. (2000). Biosensing the acute toxicity of metal interactions: Are they additive, synergistic, or antagonistic? Environmental Toxicology and Chemistry, 19(3), 775-780. https://doi.org/10.1002/etc.5620190332

Prolo, P., Chiappelli, F., Grasso, E., Rosso, M. G., Neagos, N., Dovio, A., Sartori, M. L., Perotti, P., Fantò, F., Civita, M., Fiorucci, A., Villanueva, P., & Angeli, A. (2007). Aluminium blunts the proliferative response and increases apoptosis of cultured human cells: putative relationship to Alzheimer’s disease. Bioinformation, 2(1), 24-27. https://doi.org/10.6026/97320630002024

Purwanti, I. F., Kurniawan, S. B., & Imron, M. F. (2019). Potential of Pseudomonas aeruginosa isolated from aluminium-contaminated site in aluminium removal and recovery from wastewater. Environmental Technology and Innovation, 15, 100422. https://doi.org/10.1016/j.eti.2019.100422

Rahimzadeh, M. R., Kazemi, S., Amiri, R. J., Pirzadeh, M., & Moghadamnia, A. A. (2022). Aluminium poisoning with emphasis on its mechanism and treatment of intoxication. Emergency Medicine International, 2022, 1480553. https://doi.org/10.1155/2022/1480553

Schoonen, M. A., & Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability. Reviews in Mineralogy and Geochemistry, 64(1), 59-113. https://doi.org/10.2138/rmg.2006.64.3

Sakhawoth, Y., Dupire, J., Leonforte, F., Chardon, M., Monti, F., Tabeling, P., Cabane, B., Botet, R., & Galey, J. B. (2021). Real-time observation of the interaction between aluminium salts and sweat under microfluidic conditions. Scientific Reports, 11, 6376. https://doi.org/10.1038/s41598-021-85691-8

Sappino, A. P., Buser, R., Lesne, L., Gimelli, S., Bena, F., Belin, D., & Mandriota, S. J. (2012). Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells. Journal of Applied Toxicology, 32(3), 233-243. https://doi.org/10.1002/jat.1793

SCCS (Scientific Committee on Consumer Safety) (2020). Opinion on the safety of aluminium in cosmetic products. SCCS/1613/19. https://ec.europa.eu

Schalk, I. J., Hannauer, M., & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 13(11), 2844-2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

Shelley, W. B., Hurley, H. J., & Nichols, A. C. (1953). Axillary odor; experimental study of the role of bacteria, apocrine sweat, and deodorants. AMA Archives of Dermatology and Syphilology, 68(4), 430-446. https://doi.org/10.1001/archderm.1953.01540100070012

Singh, R., Beriault, R., Middaugh, J., Hamel, R., Chenier, D., Appanna, V. D., & Kalyuzhnyi, S. (2005). Aluminium-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles, 9(5), 367-373. https://doi.org/10.1007/s00792-005-0450-7

Tenan, M. R., Nicolle, A., Moralli, D., Verbouwe, E., Jankowska, J. D., Durin, M. A., Green, C. M., & Sappino, A. P. (2021). Aluminium enters mammalian cells and destabilizes chromosome structure and number. International Journal of Molecular Sciences, 22(17), 9515. https://doi.org/10.3390/ijms22179515

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial siderophores: Classification, biosynthesis, and perspectives of use in agriculture. Plants, 11(22), 3065. https://doi.org/10.3390/plants11223065

Ustiatik, R., Nuraini, Y., Suharjono, S., & Handayanto, E. (2021). Siderophore production of the Hg-resistant endophytic bacteria isolated from local grass in Hg-contaminated soil. Journal of Ecological Engineering, 22(5), 129-138. https://doi.org/10.12911/22998993/135861

Wang, A., Li, L., Li, S., Zheng, J., Zhang, Z., Huang, F., Chi, M., Yang, G., & Cui, R. (2013). Apoptosis drives cancer cells to proliferate and metastasize. Journal of Cellular and Molecular Medicine, 17(1), 205-211. https://doi.org/10.1111/j.1582-4934.2012.01663.x

Yu, L., Wu, J., Zhai, Q., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2019). Metabolomic analysis reveals the mechanism of aluminium cytotoxicity in HT-29 cells. PeerJ, 7, e7524. https://doi.org/10.7717/peerj.7524

Zhao, Q., Wang, Y., Cao, Y., Chen, A., Ren, M., Ge, Y., Yu, Z., Wan, S., Hu, A., Bo, Q., Ruan, L., Chen, H., Qin, S., Chen, W., Hu, C., Tao, F., Xu, D., Xu, J., Wen, L., & Li, L. (2014). Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung, and gastric cancer, in Anhui province, Eastern China. Science of the Total Environment, 470-471, 340-347. https://doi.org/10.1016/j.scitotenv.2013.09.086


Refbacks

  • There are currently no refbacks.