Antimicrobial efficacy of basil and sage essential oils: time-lapse kinetics and type of interaction with ciprofloxacin

Milica Pejčić, Zorica Stojanović- Radić, Marina Dimitrijević, Niko Radulović


The increasing resistance of Pseudomonas aeruginosa strains to used antibiotics is a big problem of modern medicine. Finding antimicrobial substances which will increase the antibiotics effects is necessary. Therefore, the aim of the present study was to evaluate the time-lapse activity of the basil and sage oils, to evaluate the combined oils effect against P. aeruginosa clinical isolates and to determine the oils potential to enhance the activity of ciprofloxacin.

The obtained growth curves showed a reduction in the number of bacterial cells in the range of 10.5-94% when basil oil was applied. In the case of the sage oil, higher reduction has been observed (48.5-100%). The basil oil achieved a synergistic interaction with ciprofloxacin in 8 isolates, while the same effect for sage/ciprofloxacin combination was observed in 6 isolates. Indifferent effect was noticed in 64% of the tested isolates for basil/sage combination. These data showed potential benefits of the oils and ciprofloxacin combination therapy in the treatment of P. aeruginosa infections.


Basil oil; sage oil; time-lapse activity; synergy; ciprofloxacin; Pseudomonas aeruginosa

Full Text:



Adrar, N., Oukil, N., Bedjou, F. 2016: Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Industrial Crops and Products, 88: 112–119.

Aelenei, P., Miron, A., Trifan, A., Bujor, A., Gille, E., Aprotosoaie, A. 2016: Essential oils and their components as modulators of antibiotic activity against gram-negative bacteria. Medicines, 3 (3): 19.

Akthar, M., Degaga, B., Azam, T. 2014: Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Issues in Biological Sciences and Pharmaceutical Research, 2 (1): 1–7.

Alhazmi, A. 2015: Pseudomonas aeruginosa – Ppathogenesis and pathogenic mechanisms. International Journal of Biology, 7 (2): 44–67.

Artini, M., Patsilinakos, A., Papa, R., Boović, M., Sabatino, M., Garzoli, S., Vrenna, G., Tilotta, M., Pepi, F., Ragno, R., Selan, L. 2018: Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against Pseudomonas aeruginosa. Molecules, 23 (2): 482.

Bassolé, I. H. N., Lamien-Meda, A., Bayala, B., Tirogo, S., Franz, C., Novak, J., Nebié, R. C., Dicko, M. H. 2010: Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules, 15 (11): 7825–7839.

Calo, J. R., Crandall, P. G., O’Bryan, C. A., Ricke, S. C. 2015: Essential oils as antimicrobials in food systems - A review. Food Control, 54: 111–119.

Chouhan, S., Sharma, K., Guleria, S. 2017: Antimicrobial activity of some essential oils- present status and future perspectives. Medicines, 4 (4): 58.

Delamare Longaray, A. P., Moschen-Pistorello., T., I., Artico, L., Atti-Serafini, L., Echeverrigaray, S. 2007: Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chemistry, 100 (2): 603–608.

El-Hosseiny, L., El-Shenawy, M., Haroun, M., & Abdullah, F. 2014: Comparative evaluation of the inhibitory effect of Some essential oils with antibiotics against Pseudomonas aeruginosa. International Journal of Antibiotics, 2014: 1–5.

Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venâncio, F., Tavares, R., Brito, J. C., Figueiredo, A. C., Barroso, J. G., Pedro, L. G. 2003: Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters in Applied Microbiology, 36 (1): 35–40.

Fournomiti, M., Kimbaris, A., Mantzourani, I., Plessas, S., Theodoridou, I., Papaemmanouil, V., Kapsiotis, I., Panopoulou, M., Stavropoulou, E., Bezirtzoglou, E. E., Alexopoulos, A. 2015: Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microbial Ecology in Health & Disease, 26: 23289–23295.

Griffin, S. G., Wyllie, S. G., Markham, J. L., Leach, D. N. 1999: The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal, 14 (5): 322–332.<322::AID-FFJ837>3.0.CO;2-4

Gucwa, K., Milewski, S., Dymerski, T., Szweda, P. 2018: Investigation of the antifungal activity and mode of action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus essential oils. Molecules, 23 (5):

Hammer, K. A., C.F. Carson, Riley, T. V. 1999: Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 9071 (86): 985–990.

Hemaiswarya, S., Doble, M. 2009: Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 16 (11): 997–1005.

Khalil, R., Li, Z. G. 2011: Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. African Journal of Biotechnology, 10 (42): 8397–8402.

Langeveld, W. T., Veldhuizen, E. J. A., Burt, S. A. 2014: Synergy between essential oil components and antibiotics: A review. Critical Reviews in Microbiology, 40 (1): 76–94.

Mahmoud, A. M., El-Baky, R. M. A., Ahmed, A. B. F., Gad, G. F. M. 2016: Antibacterial activity of essential oils and in combination with some standard antimicrobials against different pathogens isolated from some clinical specimens. American Journal of Microbiological Research, 4 (1): 16–25.

Mikulášová, M., Chovanová, R., Vaverková, Š. 2016: Synergism between antibiotics and plant extracts or essential oils with efflux pump inhibitory activity in coping with multidrug-resistant staphylococci. Phytochemistry Reviews, 15 (4): 651–662.

Milenković, M. T., Božić, D. D., Slavkovska, V. N., Lakušić, B. S. 2015: Synergistic effects of Salvia officinalis L. essential oils and antibiotics against methicillin-resistant Staphylococcus aureus. Archives of Biological Sciences, 67 (3): 949–956.

Mitic-Culafic, D., Vukovic-Gacic, B., Knezevic-Vukcevic, J., Stankovic, S., Simic, D. 2005: Comparative study on the antibacterial activity of volatiles from sage (Salvia officinalis L.). Archives of Biological Sciences, 57 (3): 173–178.

Niculae, M., Spînu, M., Şandru, C. D., Cadar, D., Szakacs, B., Scurtu, I., Bolfă, P., Mateş, C. I. 2009: Antimicrobial potential of some Lamiaceae essential oils against animal multiresistant bacetria. Lucrari Ştiinłifice Meducina Veterinara, 42 (1): 170–175.

Opalchenova, G., Obreshkova, D. 2003: Comparative studies on the activity of basil - An essential oil from Ocimum basilicum L. - Against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. Journal of Microbiological Methods, 54 (1): 105–110.

Pejčić, M., Stojanović-Radić, Z., Genčić, M., Dimitrijević, M., Radulović, N. 2020: Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation, motility and pyocyanin production of Pseudomonas aeruginosa isolates. Food and Chemical Toxicology, 141 (5): 111431.

Reichling, J. 2020: Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Medica, 86 (8): 520–537.

Rossolini, G. M., Mantengoli, E. 2005: Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clinical Microbiology and Infection, Supplement, 11 (4): 17–32.

Silva, V. A., Da Sousa, J. P., De Luna Freire Pessôa, H., De Freitas, A. F. R., Coutinho, H. D. M., Alves, L. B. N., Lima, E. O. 2016: Ocimum basilicum: Antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharmaceutical Biology, 54 (5): 863–867.

Stojanović-Radić, Z., Čomić, L., Radulović, N., Blagojević, P., Mihajilov-Krstev, T., Rajković, J. 2012: Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharmaceutical Biology, 50 (8): 933–940.

Stojanović-Radić, Z., Dimitrijević, M., Genčić, M., Pejčić, M., Radulović, N. 2020: Anticandidal activity of Inula helenium root essential oil: Synergistic potential, anti-virulence efficacy and mechanism of action. Industrial Crops and Products, 149: 112373.

Tardugno, R., Pellati, F., Iseppi, R., Bondi, M., Bruzzesi, G., Benvenuti, S. 2018: Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Natural Product Research, 32 (5): 544–551.

Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., Rather, M. A. 2019: A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis 134: 103580.

Van Vuuren, S. F., Suliman, S., Viljoen, A. M. 2009: The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in Applied Microbiology, 48 (4): 440–446.

Van Vuuren, S. F., Viljoen, A. M. 2007: Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour and Fragrance Journal, 22 (6): 540–544.

Yap, P. S. X., Yiap, B. C., Ping, H. C., Lim, S. H. E. 2014: Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. The Open Microbiology Journal, 8 (1): 6–14.

Yu, Z., Tang, J., Khare, T., Kumar, V. 2020: The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 140: 104433.


  • There are currently no refbacks.