Evaluation of the reference genes in human adipose tissue and lipoma samples

Sanja Stojanović, Stevo Najman, Vladimir Cvetković, Aleksandra Korać


Housekeeping genes, by definition and function, should be constitutively and stably expressed in all cells of the organism, regardless of the cell type and function they accomplish. However, it was observed that expression of housekeeping genes, used as reference genes in gene expression analysis, varies greatly in different cells and tissue types and is also dependent on the experimental conditions and treatments. The aim of our study was to examine the expression patterns of the most frequently used reference genes (GAPDH, ACTB and RRN18S) in the samples of human subcutaneous adipose tissue (scWAT) and benign adipose tissue tumors (lipomas). The obtained results have shown that the expression of all three examined housekeeping genes is slightly lower in lipoma samples compared to scWAT samples and that GAPDH is the most stable housekeeping gene in examined samples so it can be recommended as an optimal reference gene for gene expression analysis in human scWAT and lipoma samples.


reference genes; gene expression; adipose tissue; lipoma; scWAT

Full Text:



Almeida-Oliveira, F., Leandro, J.G.B., Ausina, P., Sola-Penna, M., Majerowicz, D. 2017: Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomedicine & Pharmacotherapy, 88: 948-955.

Andersen, C.L., Jensen, J.L., Ørntoft, T.F. 2004: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5245-50.

Bustin, S.A. 2002: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29(1): 23-39.

Bustin, S.A., Nolan, T. 2004: Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Techniques, 15(3): 155-66.

Caracausi, M., Piovesan, A., Antonaros, F., Strippoli, P., Vitale, L., Pelleri, M.C. 2017: Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Molecular Medicine Reports, 16(3): 2397–2410.

Derveaux, S., Vandesompele, J., Hellemans, J. 2010: How to do successful gene expression analysis using real-time PCR. Methods, 50(4): 227-30.

De Spiegelaere, W., Dern-Wieloch, J., Weigel, R., Schumacher, V., Schorle, H., Nettersheim, D., Bergmann, M., Brehm, R., Kliesch, S., Vandekerckhove, L., Fink, C. 2015: Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One, 10(3): e0122515.

Dessels, C., Pepper, M.S. 2019: Reference Gene Expression in Adipose-Derived Stromal Cells Undergoing Adipogenic Differentiation. Tissue Engineering. Part C, Methods, 25(6): 353-366.

Dheda, K., Huggett, J.F., Bustin, S.A., Johnson, M.A., Rook, G., Zumla, A. 2004: Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37(1): 112-4, 116, 118-9.

Eisenberg, E., Levanon, E.Y. 2013: Human housekeeping genes, revisited. Trends in Genetics, 29(10): 569-74.

Gabrielsson, B.G., Olofsson, L.E., Sjögren, A., Jernås, M., Elander, A., Lönn, M., Rudemo, M., Carlsson, L.M. 2005: Evaluation of reference genes for studies of gene expression in human adipose tissue. Obesity research, 13(4): 649-52.

Gorzelniak, K., Janke, J., Engeli, S., Sharma, A.M. 2001: Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes. Hormone and Metabolic Research, 33(10): 625-7.

Hurtado del Pozo, C., Calvo, R.M., Vesperinas-García, G., Gómez-Ambrosi, J., Frühbeck, G., Corripio-Sánchez, R., Rubio, M.A., Obregon, M.J. 2010: IPO8 and FBXL10: new reference genes for gene expression studies in human adipose tissue. Obesity, 18(5): 897-903.

Mohammed, U., Samaila, M.O., Abubakar, M. 2014: Pattern of adipose tissue tumors in Ahmadu Bello University Teaching Hospital, Zaria, Nigeria. Annals of Nigerian Medicine, 8(1): 8–10.

Omonte, S.V., de Andrade, B.A., Leal, R.M., Capistrano, H.M., Souza, P.E., Horta, M.C. 2016: Osteolipoma: A rare tumor in the oral cavity. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 122(1): e8–e13.

Perez, L.J., Rios, L., Trivedi, P., D'Souza, K., Cowie, A., Nzirorera, C., Webster, D., Brunt, K., Legare, J.F., Hassan, A., Kienesberger, P.C., Pulinilkunnil, T. 2017: Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. Scientific Reports, 7(1): 3612.

Pérez, S., Royo, L.J., Astudillo, A., Escudero, D., Alvarez, F., Rodríguez, A., Gómez, E., Otero, J. 2007: Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors. BMC Molecular Biology, 8: 114.

Radonić, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A. 2004: Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313(4): 856-62.

Schmittgen, T.D., Zakrajsek, B.A. 2000: Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46: 69-81.

Stojanović, S., Najman, S. 2019: The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages’ Response and Wound Healing in Indirect Co-culture System In Vitro. International Journal of Molecular Sciences, 20(7): 1671.

Stojanović, S., Najman, S., Korać, A. 2018: Stem Cells Derived from Lipoma and Adipose Tissue—Similar Mesenchymal Phenotype but Different Differentiation Capacity Governed by Distinct Molecular Signature. Cells, 7(12): 260.

Suzuki, T., Higgins, P.J., Crawford, D.R. 2000: Control selection for RNA quantitation. Biotechniques, 29: 332-7.

Taube, M., Andersson-Assarsson, J.C., Lindberg, K., Pereira, M.J., Gäbel, M., Svensson, M.K., Eriksson, J.W., Svensson, P.A. 2015: Evaluation of reference genes for gene expression studies in human brown adipose tissue. Adipocyte, 4(4): 280-5.

Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., Heinen, E. 1999: Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75(2-3): 291-5.

Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzagli, M., Bustin, S.A., Orlando, C. 2002: Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Analytical Biochemistry, 309(2): 293-300.

Warrington, J.A., Nair, A., Mahadevappa, M., Tsyganskaya, M. 2000: Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiological Genomics, 2: 143-7.

Zhang, W.X., Fan, J., Ma, J., Rao, Y.S., Zhang, L., Yan, Y.E. 2016: Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Three Types of Rat Adipose Tissue. International Journal of Molecular Sciences, 17(6): E968.


  • There are currently no refbacks.