Role of nanotechnology in biomedical advances: a review of innovations and future directions

Pankaj Kumar, Jasmeet Kaur

Abstract


Nanotechnology, a rapidly evolving field, enables the manipulation of materials at the nanoscale, transforming traditional manufacturing and reducing environmental impact through enhanced material efficiency. Recognizing the urgent need for advanced materials in biomedical applications motivates the exploration of nanobiotechnology for drug delivery, implant design, and disease diagnostics. This study hypothesizes that nanostructured materials, including liposomes, carbon nanotubes (CNTs), metallic and metal oxide nanoparticles (MONPs), and nanopatterned surfaces, can revolutionize biomedical technologies. Using a comprehensive review methodology, the study highlights the chemical and physical properties of these nanomaterials that enable their application in drug delivery systems, biosensing, bioimaging, and bone substitute implants. Our findings reveal that these materials not only enhance therapeutic efficacy but also provide avenues for safer and more efficient diagnostics, with implications for improved patient outcomes. These advancements emphasize the critical role of nanotechnology in addressing modern biomedical challenges while minimizing toxicity through insights from nanotoxicology studies.


Keywords


inorganic particles, liposomes, nanobiotechnology, nanopatterned surfaces

Full Text:

PDF

References


Acharya, R., Patil, T. V., Dutta, S. D., Lee, J., Ganguly, K., Kim, H. & Lim, K. T. (2024). Single‐Walled Carbon Nanotube‐Based Optical Nano/Biosensors for Biomedical Applications: Role in Bioimaging, Disease Diagnosis, and Biomarkers Detection. Advanced Materials Technologies, 2400279. https://doi.org/10.1002/admt.202400279

Aher, P., Surana, K., Ahire, E., Talele, S., Mahajan, S. & Kshirsagar, S. (2024). Carbon Nanotube: A Promising Role in Biomedical Imaging. In Carbon Nanotubes for Biomedical Applications and Healthcare (pp. 187-206). Apple Academic Press. ISBN 9781003396390

Al-zharani, M., Hasnain, M. S., Al-Eissa, M. S. & Alqahtani, R. A. (2024). Novel drug delivery to the brain for neurodegenerative disorder treatment using carbon nanotubes. Journal of King Saud University-Science, 103513. https://doi.org/10.1016/j.jksus.2024.103513

Alzahrani, A. R., Ibrahim, I. A. A., Shahzad, N., Shahid, I., Alanazi, I. M., Falemban, A. H. & Azlina, M. F. N. (2023). An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy-A systemic review. International Journal of Biological Macromolecules, 126889. https://doi.org/10.1016/j.ijbiomac.2023.126889

Balkrishna, A., Arya, V., Rohela, A., Kumar, A., Verma, R., Kumar, D., Kumar, P., Kumar, S., Kumar, K., Jeet, K. & Thakur, N. (2021). Nanotechnology interventions in the management of COVID-19: prevention, diagnosis and virus-like particle vaccines. Vaccines, 9(10), 1129. https://www.mdpi.com/2076-393X/9/10/1129

Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M. & Bose, S. (2023). Improving biocompatibility for the next generation of metallic implants. Progress in Materials Science, 133, 101053. https://doi.org/10.1016/j.pmatsci.2022.101053

Behyar, M. B., Nilghaz, A., Hasanzadeh, M. & Shadjou, N. (2024). Recent progresses and challenges on mesoporous silica nanoparticles for DNA-based biosensors and diagnostics. TrAC Trends in Analytical Chemistry, 117846. https://doi.org/10.1016/j.trac.2024.117846

Bharathi, S., Gowrilakshmi, S. & Radhakrishnan, M. (2024). Translational Research in Nanotechnology for Biomedical Applications. In Translational Research in Biomedical Sciences: Recent Progress and Future Prospects (pp. 207-225). https://doi.org/10.1007/978-981-97-1777-4_14

Choudary, M. R. P., Surya, M. & Saravanan, M. (2024). Green synthesis of cerium oxide nanoparticles using Tribulus terrestris: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates. Biomedical Physics and Engineering Express, 10(6), 065033. https://doi.org/10.1088/2057-1976/ad7f59

Devi, M., Sharma, S., Kumar, P., Thakur, N., Kumar, G., Sharma, M. V., Sharma, A. J., Kumar, K., Sharma, A., Jeet, K. & Thakur, N. (2024). Antifungal, antibacterial and antioxidant activity of Pinus roxburghii mediated green synthesized zinc and gadolinium doped manganese oxide nanoparticles. Colloids and Surfaces C: Environmental Aspects, 2, 100046. https://doi.org/10.1016/j.colsuc.2024.100046

Duman, H., Eker, F., Akdaşçi, E., Witkowska, A. M., Bechelany, M. & Karav, S. (2024). Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials, 14(18), 1527. https://doi.org/10.3390/nano14181527

Ebrahimi, M., Fatahi, Y., Rabiee, N., Akhavan, O. & Plaza, E. (2024). Graphene Self-Powered Micro/Nano-Robots from Fascinating Research Samples to Commercial Products: Energy Supply Mechanisms and Bio-Sensing Applications. Carbon, 230, 119659. https://doi.org/10.1016/j.carbon.2024.119659

Elabbasy, M. T., Domyati, D., Alshehri, A. M., Menazea, A. A. & El-Morsy, M. A. (2024). Physical and biological study of Yttrium oxide/titanium oxide/carbon nanotube/polystyrene films for wound healing purposes. Ceramics International, 50(21), 41307-41314. https://doi.org/10.1016/j.ceramint.2024.07.442

Furko, M., Balázsi, K. & Balázsi, C. (2023). Calcium phosphate loaded biopolymer composites—a comprehensive review on the most recent progress and promising trends. Coatings, 13(2), 360. https://doi.org/10.3390/coatings13020360

Ghafari, Y., Asefnejad, A. & Ogbemudia, D. O. (2024). Gold Nanoparticles in Biomedicine: Advancements in Cancer Therapy, Drug Delivery, Diagnostics, and Tissue Regeneration. Scientific Hypotheses, 1(1). https://doi.org/10.69530/ajtf7w89

Gupta, J., Hassan, P. A. & Barick, K. C. (2023). Multifunctional ZnO nanostructures: a next-generation nanomedicine for cancer therapy, targeted drug delivery, bioimaging, and tissue regeneration. Nanotechnology, 34(28), 282003. https://doi.org/10.1088/1361-6528/accc35

Haleem, A., Javaid, M., Singh, R. P., Rab, S. & Suman, R. (2023). Applications of nanotechnology in the medical field: a brief review. Global Health Journal, 7(2), 70-77. https://doi.org/10.1016/j.glohj.2023.02.008

Hossain, A., Rayhan, M. T., Mobarak, M. H., Rimon, M. I. H., Hossain, N., Islam, S. & Al Kafi, S. A. (2024). Advances and significance of gold nanoparticles in cancer treatment: A comprehensive review. Results in Chemistry, 8, 101559. https://doi.org/10.1016/j.rechem.2024.101559

Jangid, H., Singh, S., Kashyap, P., Singh, A. & Kumar, G. (2024). Advancing biomedical applications: An in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Frontiers in Pharmacology, 15, 1438227. https://doi.org/10.3389/fphar.2024.1438227

Jawale, J. K. & Kashikar, V. S. (2024). Niosomes: A Promising Nonionic Surfactant Vesicular System for Enhancement of Anticancer Effect of Phytochemicals. International Journal of Health Sciences, 6(S5), 8809-8833. https://dx.doi.org/10.53730/ijhs.v6nS5.11794

Jonathan, E. M. & Agbini, O. A. (2024). Exploring Carbon Nanotubes as Antimicrobial Agents: Efficacy, Toxicity, Challenges, and Future Prospects. Journal of Applied Sciences and Environmental Management, 28(9), 2601-2613. https://doi.org/10.4314/jasem.v28i9.3

Khan, M. S., Gowda, B. J., Hasan, N., Gupta, G., Singh, T.S. & Kesharwani, P. (2024). Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives. European Polymer Journal, 206, 112800. https://doi.org/10.1016/j.eurpolymj.2024.112800

Kimta, N., Dhalaria, R., Kuča, K., Cimler, R., Guleria, V., Guleria, S. & Kumar, H. (2024). Production of metallic nanoparticles from agricultural waste and their applications. In Transforming Agriculture Residues for Sustainable Development: From Waste to Wealth (pp. 131-156). https://doi.org/10.1007/978-3-031-61133-9_6

Kumar, P., Kaushik, A., Kumar, S. & Thakur, N. (2024). Chemical and green synthesized Co/Ni-doped hematite nanoparticles for enhancing the photocatalytic and antioxidant properties. Physica Scripta, 99(10), 105960. https://doi.org/10.1088/1402-4896/ad7329

Kumar, P., Kumar, S., Thakur, N., Jeet, K., Tapwal, A. & Kumar, K. (2024). Photocatalytic, antibacterial and antioxidant potential of spheroidal shape chromium and yttrium doped cobalt oxide nanoparticles: A green approach. Journal of the Indian Chemical Society, 101(8), 101199. https://doi.org/10.1016/j.nanoso.2024.101188

Kumar, P., Thakur, N., Tapwal, A. & Jeet, K. (2023). Degradation of malachite green dye by capping polyvinylpyrrolidone and Azadirachta indica in hematite phase of Ni doped Fe₂O₃ nanoparticles via co-precipitation method. Nanofabrication, 8. https://doi.org/10.37819/nanofab.008.304

Kumar, P., Thakur, N., Thakur, V. K. & Kyzas, G. Z. (2024). Nanomaterial-Based Photochemical Degradation of Environmental Pollutants. In Nanotechnology: Agriculture, Environment and Health (pp. 161-178). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6814-1_7

Kunachowicz, D., Kłosowska, K., Sobczak, N. & Kepinska, M. (2024). Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities: A State-of-the-Art Review. Nanomaterials, 14(17), 1424. https://www.mdpi.com/2079-4991/14/17/1424

Li, L., Wang, T., Zhong, Y., Li, R., Deng, W., Xiao, X. & Wang, Y. (2024). A review of nanomaterials for biosensing applications. Journal of Materials Chemistry B, 12(5), 1168–1193. https://doi.org/10.1039/D3TB02648E

Li, X., Wang, X., Qiu, H., Li, S., Tse, L. H. H., Lo, W. S. & Wong, W. T. (2024). Engineering optimal gold nanorod-loaded hollow mesoporous organosilica nanotheranostics for NIR-II photoacoustic microscopy imaging and tumor synergistic therapy. Chemical Engineering Journal, 498, 155310. https://doi.org/10.1016/j.cej.2024.155310

Maghimaa, M., Sagadevan, S., Boojhana, E., Fatimah, I., Lett, J. A., Moharana, S. & Al-Anber, M. A. (2024). Enhancing biocompatibility and functionality: Carbon nanotube-polymer nanocomposites for improved biomedical applications. Journal of Drug Delivery Science and Technology, 99, 105958. https://doi.org/10.1016/j.jddst.2024.105958

Mamidi, N., Delgadillo, R. M., Sustaita, A. O., Lozano, K. & Yallapu, M. M. (2024). Current nanocomposite advances for biomedical and environmental application diversity. Medicinal Research Reviews, 45(2), 576–628. https://doi.org/10.1002/med.22082

Mitsuhashi, H., Morikawa, R., Noguchi, Y. & Takasu, M. (2023). Dissipative particle dynamics simulations for shape change of growing lipid bilayer vesicles. Life, 13(2), 306. https://www.mdpi.com/2075-1729/13/2/306

Motamedi, M. & Tabatabaei, M. S. (2025). Novel Drug Delivery Systems: Approach to the Market. In Novel Drug Delivery Systems: Fundamentals and Applications (pp. 35-65). https://doi.org/10.1002/9781119852476.ch2

Nikkerdar, N., Golshah, A., Mobarakeh, M. S., Fallahnia, N., Azizie, B. & Shoohanizad, E. (2024). Recent progress in application of zirconium oxide in dentistry. Journal of Medicinal and Pharmaceutical Chemistry Research, 6, 1042-1071. https://doi.org/10.48309/JMPCR.2024.432254.1069

Parvin, N., Kumar, V., Joo, S. W. & Mandal, T. K. (2024). Emerging trends in nanomedicine: carbon-based nanomaterials for healthcare. Nanomaterials, 14(13), 1085. https://doi.org/10.3390/nano14131085

Palanisamy, G., Kandasamy, B., Lee, J. & Thangavelu, P. (2024). Engineering 0D/2D design of zinc sulfide quantum dots encapsulated with yttrium tungstate nanosheets for improving decomposition of organic dyes and doxycycline hydrochloride drug. Journal of Colloid and Interface Science, 676, 906-917. https://doi.org/10.1016/j.jcis.2024.07.177

Pande, P. M., Pandey, S. P., Shirsat, S. P. & Wagh, S. M. (2024). Zero-, one-, two-, and three-dimensional carbon nanostructures derived from bio-based material. In Bio-derived Carbon Nanostructures (pp. 83-107). https://doi.org/10.1016/B978-0-443-13579-8.00017-6

Raj, B. & Kaladhar, K. (2025). Nanomaterials for biomedical applications. In Nanomedicine in Translational Research (pp. 107-139). Academic Press. https://doi.org/10.1016/B978-0-443-22257-3.00006-4

Ramezani, M., Mohd Ripin, Z., Pasang, T. & Jiang, C. P. (2023). Surface engineering of metals: techniques, characterizations and applications. Metals, 13(7), 1299. https://doi.org/10.3390/met13071299

Rana, A., Kumar, P., Thakur, N., Kumar, S., Kumar, K. & Thakur, N. (2024). Investigation of photocatalytic, antibacterial and antioxidant properties of environmentally green synthesized zinc oxide and yttrium doped zinc oxide nanoparticles. Nanostructures and Nano-Objects, 38, 101188. https://doi.org/10.1016/j.nanoso.2024.101188

Rani, R., Malik, P., Dhania, S. & Mukherjee, T. K. (2023). Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment. Pharmaceutics, 15(1), 227. https://www.mdpi.com/1999-4923/15/1/227

Santulli, C., Palanisamy, S., Kalimuthu, M., Azeez, A., Nagarajan, R. & Shanmugavel, R. (2024). Role of nanofillers in thermoset-based polymer blends. In Nanofillers for Binary Polymer Blends (pp. 165-193). https://doi.org/10.1016/B978-0-323-88655-0.00017-3

Shabib Akhtar, M., Chandrasekaran, K., Saminathan, S., Rajalingam, S. R., Mohsin, N., Awad Alkarem Ahmed, K. A. & Sundaram, G. (2024). Nanoengineered chitosan functionalized titanium dioxide biohybrids for bacterial infections and cancer therapy. Scientific Reports, 14(1), 3705. https://doi.org/10.1038/s41598-024-52847-1

Sharma, I. & Kumar, P. (2021). Synthesis and characterization of Mn-Zn soft ferrite nanoparticles of [Gd³⁺] doped. European Journal of Molecular and Clinical Medicine, 8(4), 1+. https://link.gale.com/apps/doc/A698308061/HRCA?u=demoindiaandsid=googleScholar

Sharma, I., Kumar, P., Rajput, P. & Bachheti, R. K. (2023). Recent development and importance of nanoparticles in disinfection and pathogen control. In Nanomaterials for environmental and agricultural sectors (pp. 83-106). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2874-3_5

Song, Z., Tao, Y., Liu, Y. & Li, J. (2024). Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: a focus on viral vectors and extracellular vesicles. Frontiers in Immunology, 15, 1444437. https://doi.org/10.3389/fimmu.2024.1444437

Sonowal, L. & Gautam, S. (2024). Advancements and challenges in carbon nanotube-based drug delivery systems. Nanostructures and Nano-Objects, 38, 101117. https://doi.org/10.1016/j.nanoso.2024.101117

Sytu, M. R. C. & Hahm, J. I. (2024). Principles and applications of ZnO nanomaterials in optical biosensors and ZnO nanomaterial-enhanced biodetection. Biosensors, 14(10), 480. https://www.mdpi.com/2079-6374/14/10/480

Sulthana, S., Shrestha, D. & Aryal, S. (2024). Maximizing liposome tumor delivery by hybridizing with tumor-derived extracellular vesicles. Nanoscale, 16(35), 16652-16663. https://doi.org/10.1039/D4NR02191F

Suchý, T., Bartoš, M., Sedláček, R., Šupová, M., Žaloudková, M., Martynková, G. S. & Foltán, R. (2021). Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials, 14(16), 4388. https://www.mdpi.com/1996-1944/14/16/4388

Thakur, N., Kumar, P., Thakur, N., Thakur, V. K. & Kyzas, G. Z. (2024). Nanomaterial-based photochemical degradation of environmental pollutants. In Nanotechnology: Agriculture, Environment and Health (pp. 161-178). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6814-1_7

Thakur, N., Thakur, N., Chauhan, P., Kumar, K., Jeet, K., Kumar, A. & Sharma, D. P. (2022). Futuristic role of nanoparticles for treatment of COVID-19. Biomaterials and Polymers Horizon, 1(2). https://doi.org/10.37819/bph.001.02.0166

Thakur, S., Kumar, P., Thakur, N., Kumar, K., Jeet, K., Kumar, S. & Thakur, N. (2024). Photocatalytic, antibacterial and antioxidant potential of spheroidal shape chromium and yttrium doped cobalt oxide nanoparticles: A green approach. Journal of the Indian Chemical Society, 101(8), 101199. https://doi.org/10.1016/j.nanoso.2024.101188

Verma, D. K., Sharma, A., Awasthi, L., Singh, H., Kumar, P., Rajput, P. & Bachheti, R. K. (2023). Recent development and importance of nanoparticles in disinfection and pathogen control. In Nanomaterials for environmental and agricultural sectors (pp. 83-106). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2874-3_5

Yazdani, S., Mozaffarian, M., Pazuki, G., Hadidi, N., Villate-Beitia, I., Zárate, J. & Pedraz, J. L. (2024). Carbon-based nanostructures as emerging materials for gene delivery applications. Pharmaceutics, 16(2), 288. https://doi.org/10.3390/pharmaceutics16020288

Zhang, H., Wang, F. & Guo, Z. (2024). The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Advances in Colloid and Interface Science, 325, 103097. https://doi.org/10.1016/j.cis.2024.103097


Refbacks

  • There are currently no refbacks.