Characterization of some mappings on rings and algebras

Nadeem Ur Rehman, Amin Hosseini




The main purpose of this article is to prove the following main result:

Let A be a von Neumann algebra and T : A → A be a bounded linear map satisfying T(

Full Text:



S. Ali and C. Haetinger, Jordan -centralizers in rings and some applications, Bol. Soc. Paran. Mat.

(2008) 71-80.

M. Ashraf, N. Rehman, Sh. Ali and M. R. Mozumder, On generalized (; )-derivations in semiprime

rings with involution, Math. Slovaca. 62 3 (2012) 451-460.

Mohammad Ashraf, On left (; ')-derivations of prime rings, Archivum Mathematicum. 41 2 (2005)


M. Bresar, Characterizations of derivations on some normed algebras with involution, J. Algebra

(1992), 454-462.

M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 140 4 (1988) 1003-1006.

M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 3 (1988)


Y. Chen, Note on generalized Jordan left centralizers, Journal of Algebra, Number Theory: Advances

and Applications. 5 (2011) 61-72.

J. Cusack, Jordan derivations on rings, Proc.Amer. Math. Soc. 53 (1975) 1104-1110.

G. Dales, et al., Introduction to Banach algebras, Operators and harmonic analysis, Cambridge

University press, (2002).

I. N. Herstein, Jordan derivations of prime rings, Proc.Amer. Math. Soc. 8 (1957) 1104-1110.

R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol. I-II,

Academic Press, 1983-1986.

M. Takesaki, Theory of Operator Algebras , Springer-Verlag Berlin Heidelberg New York, 2001.

Joso Vukman and Irena Kosi-Ulbl, Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71

(2005) 225-234.

Joso Vukman, A note on generalized derivations of semiprime rings, Taiwanese Journal of Mathe-

matics. 11 2 (2007) 367-370.

Borut Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 4 (1991) 609-


  • There are currently no refbacks.