Browder-type Theorems for Direct sums of Operators
Abstract
In this paper we study the stability of Browder-type Theorems for orthogonal direct sums.
Counterexamples show that in general properties (Bw); (Bb); (Baw) and (Bab) are not pre-
served under direct sums. Moreover, we characterize the stability of the property (Bb) under
direct sum via union of B-Weyl spectra of its summands. We also obtain analogous results for
properties (Baw); (Bab) and (Bw) with extra assumptions. The theory is exemplied in the
case of some special classes of operators.
Full Text:
PDFReferences
P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Aca-
demic Publishers, (2004).
-----------------------------------------------------------------
P. Aiena, J.R. Guillen, Weyl's theorem for perturbations of paranormal operators, Proc. Amer.
Math. Soc. 135 (2007), 2443-2451.
---------------------------------------------------------------------------
A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equ. and Oper. Theory, 13
(1990), 307-315.
------------------------------------------------------------------------
M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. and Oper. Theory, 34 (1999),
no. 2, p. 244-249.
----------------------------------------------------------------------------
M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust.
Math. Soc. 76 (2004), 291-302.
----------------------------------------------------------------------
M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math.
(Szeged) 69 (2003), 359-376.
-----------------------------------------------------------------------
M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
-----------------------------------------------------------------
M. Berkani and N. Castro and S. V. Djordjevic, Single valued extension property and gener-
alized Weyl's theorem, Math. Bohemica, 131 (2006), No. 1, p. 29-38.
---------------------------------------------------------------------
M. Berkani, H. Zariouh, Weyl-type Theorems for direct sums, Bull. Korean. Math. Soc. 49
(2012), No. 5, pp. 1027-1040.
------------------------------------------------------------------------
J. B. Conway, (1990). The theory of subnormal operators, Mathematical Surveys and mlono-
graphs, N. 36, (1992). American Mthematical Society, Providence, Rhode Island. Springer-
Verlag, New York.
--------------------------------------------------------------
R. E. Curto, Y. M. Han, Weyl's theorem, a-Weyl's thorem, and local spectral theory, J. London
Math. Soc. 67 (2) (2003), 499-509.
-------------------------------------------------------------
R. Curto and Y.M. Han Weyl's theorem for algebraically paranormal operators. In- tegr. equ.
oper. theory 47, No.3, (2003), 307-314.
-----------------------------------------------------------------
B. P. Duggal, C. S. Kubrusly, Weyl's theorem for direct sums, Studia Sci. Math. Hungar. 44
(2007), 275-290.
-----------------------------------------------------------------------
S. V. Djordjevic and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer.
Math. Soc. 131, No. 8 (2003), pp. 2543-2547.
------------------------------------------------------------------
A. Gupta and N. Kashyap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl.
(2) (2011), 1-7.
-------------------------------------------------------------------
H. Heuser, Functional Analysis, John Wiley & Sons Inc, New York, (1982).
---------------------------------------------------------------------
K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, Clarendon
Press Oxford, (2000).
--------------------------------------------------------------------
H. Zariouh and Zguitti, Variations on Browder's Theorem, Acta Math. Univ. Comenianae Vol
, 2 (2012), pp, 255-264.
------------------------------------------------------------------
W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131-138.
Refbacks
- There are currently no refbacks.