Browder-type Theorems for Direct sums of Operators

ZARIOUH Hassan, ARROUD Abdelmajid

Abstract


In this paper we study the stability of Browder-type Theorems for orthogonal direct sums.
Counterexamples show that in general properties (Bw); (Bb); (Baw) and (Bab) are not pre-
served under direct sums. Moreover, we characterize the stability of the property (Bb) under
direct sum via union of B-Weyl spectra of its summands. We also obtain analogous results for
properties (Baw); (Bab) and (Bw) with extra assumptions. The theory is exemplied in the
case of some special classes of operators.


Full Text:

PDF

References


P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Aca-

demic Publishers, (2004).

-----------------------------------------------------------------

P. Aiena, J.R. Guillen, Weyl's theorem for perturbations of paranormal operators, Proc. Amer.

Math. Soc. 135 (2007), 2443-2451.

---------------------------------------------------------------------------

A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equ. and Oper. Theory, 13

(1990), 307-315.

------------------------------------------------------------------------

M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. and Oper. Theory, 34 (1999),

no. 2, p. 244-249.

----------------------------------------------------------------------------

M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust.

Math. Soc. 76 (2004), 291-302.

----------------------------------------------------------------------

M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math.

(Szeged) 69 (2003), 359-376.

-----------------------------------------------------------------------

M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.

-----------------------------------------------------------------

M. Berkani and N. Castro and S. V. Djordjevic, Single valued extension property and gener-

alized Weyl's theorem, Math. Bohemica, 131 (2006), No. 1, p. 29-38.

---------------------------------------------------------------------

M. Berkani, H. Zariouh, Weyl-type Theorems for direct sums, Bull. Korean. Math. Soc. 49

(2012), No. 5, pp. 1027-1040.

------------------------------------------------------------------------

J. B. Conway, (1990). The theory of subnormal operators, Mathematical Surveys and mlono-

graphs, N. 36, (1992). American Mthematical Society, Providence, Rhode Island. Springer-

Verlag, New York.

--------------------------------------------------------------

R. E. Curto, Y. M. Han, Weyl's theorem, a-Weyl's thorem, and local spectral theory, J. London

Math. Soc. 67 (2) (2003), 499-509.

-------------------------------------------------------------

R. Curto and Y.M. Han Weyl's theorem for algebraically paranormal operators. In- tegr. equ.

oper. theory 47, No.3, (2003), 307-314.

-----------------------------------------------------------------

B. P. Duggal, C. S. Kubrusly, Weyl's theorem for direct sums, Studia Sci. Math. Hungar. 44

(2007), 275-290.

-----------------------------------------------------------------------

S. V. Djordjevic and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer.

Math. Soc. 131, No. 8 (2003), pp. 2543-2547.

------------------------------------------------------------------

A. Gupta and N. Kashyap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl.

(2) (2011), 1-7.

-------------------------------------------------------------------

H. Heuser, Functional Analysis, John Wiley & Sons Inc, New York, (1982).

---------------------------------------------------------------------

K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, Clarendon

Press Oxford, (2000).

--------------------------------------------------------------------

H. Zariouh and Zguitti, Variations on Browder's Theorem, Acta Math. Univ. Comenianae Vol

, 2 (2012), pp, 255-264.

------------------------------------------------------------------

W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131-138.


Refbacks

  • There are currently no refbacks.