A Bound for Imaginary Parts of Eigenvalues of Hilbert - Schmidt Operators
Abstract
Let $A$ be a Hilbert - Schmidt operator in a separable Hilbert space, $A^*$ is the adjoint to $A$, and $N_{2}(A)=$ $[Trace\; (AA^*)]^{1/2}$. It is proved that $$ \bs 1 \8 (Im\;\la_k )^2\le N_2^2(A_I)- \fr 18 \left(\ze(A)- \sqrt{\ze^2(A)+2\sqrt 2 N_2([A,A^*])}\right)^2, $$ where $A_I=(A-A^*)/2i$, $\la_k$ $(k=1, 2, ...)$ are the eigenvalues of $A$, $\ze(A):=\sup_{j, k=1, 2, ...; \;j\neq k} |\la_j-\la_{k}|$ is the spread of the eigenvalues $A$ and $[A,A^*]=AA^*-A^*A$. That result refines the classical inequality $$ \bs 1 \8 (Im\;\la_k )^2\le N_2^2(A_I). $$
{\bf Key words}: Hilbert-Schmidt operator, inequality for eigenvalues
{\bf AMS (MOS) subject classification}: 47B10, 47B06
Full Text:
PDFReferences
M.I. Gil', {em Operator Functions and Localization of Spectra}, Lecture Notes
In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.
M.I. Gil', Lower bounds for eigenvalues of Schatten-von Neumann operators, {em J. of
Inequalities in Pure and Appl. Mathem, 8}, no 3, Article 66 (2007), 7 pp.
M.I. Gil',
Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators,
{em Journal of Functional Analysis}, Online from August, 2014.
I.C. Gohberg and M.G. Krein, {em Introduction to the Theory
of Linear Nonselfadjoint Operators}, Trans. Mathem. Monographs, v. 18,
Amer. Math. Soc., Providence, R. I., 1969.
W. Knirsch and G. Schneider, Continuity and Schatten--von Neumann $p$-class membership of Hankel operators with anti-holomorphic symbols on (generalized) Fock spaces.
{em J. Math. Anal. Appl. 320}, no. 1, (2006) 403-414 .
Marcus, M. and Minc, H. (1964), {em A Survey of Matrix Theory
and Matrix Inequalities}. Allyn and Bacon, Boston.
M. Sigg, A Minkowski-type inequality for the Schatten norm.
{em J. Inequal. Pure Appl. Math., 6}, no. 3, Paper no. 87, 7 p., electronic
only (2005).
J. Toft, Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces.
{em Ann. Global Anal. Geom. 30}, no. 2, (2006) 169-209.
M.W. Wong, Schatten-von Neumann norms of localization operators.
{em Arch. Inequal. Appl., 2}, no. 4, (2004) 391-396.
Xia Jingbo, On the Schatten class membership of Hankel operators on the unit ball.
{em Ill. J. Math., 46}, no. 3, (2002) 913-928.
Refbacks
- There are currently no refbacks.