### COMMON FIXED POINTS BY TWO STEP ITERATIVE SCHEME FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

#### Abstract

ing common xed points of two asymptotically nonexpansive mappings in the

framework of a uniformly convex Banach spaces and established weak and

strong convergence results for common xed points of asymptotically nonex-

pansive mappings. Some example is given to support our main results. The

results obtained in this paper are generalizations of Khan [9].

#### Full Text:

PDF#### References

Cho, Y.J., Zhou, H.Y. and Guo G. 2004. Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mapping. Comput. Math. Appl. 47 : 707{717.

Das, G. and Debta J.P. 1986. Fixed points of quasi-nonexpansive mappings.Indian J. Pure. Appl. Math. 17 : 1263{1269.

Deng, L.C., Cubiotti P. and Yao J.C. 2008. Approximation of common xed points of families of nonexpansive mappings. Taiwanese J. Math. 12: 487{500.

Deng, L.C. , Cubiotti, P. and Yao J.C. 2008. An implicit iteration scheme for monotone variational inequalities and xed point problems. Nonlinear Anal. 69 : 2445{2457.

Deng, L.C. , Schaible S. and Yao, J.C. 2008. Implicit iteration scheme with pertarbed mapping for equilibrium problems and xed point problems of netely many nonexpansive mapping.J. Optim. Theory Appl. 139 : 403{418.

Fukhar-ud-din, H. and Khan, S.H. 2007. Convergence of iterate with errors of asymptotically quasi-nonexpansive mappings and application. J. Math. Anal. Appl. 328 : 821{829.

Goebel, K. and Kirk W.A. 1972. A xed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 : 171{174.

Guo, W. Cho, Y.J., and Guo W.2012. Convergence theorems for mixed type asymptotically nonexpansive mappings. Fixed Point Theory and Applications 2012:224.

Khan, S.H., A Picard-Mann hybrid iterative process, Fixed Point Theory and Applications 2013, 2013:69.

Khan, S.H., Cho Y.J. and Abbas M. Convergence to common xed points by a modiediteration process, J. Appl. Math. and Comput. doi:10.1007/s12190-010-0381.

Khan, S.H. and Takahashi W. 2001. Approximating common xed points of two asymptotically nonexpansive mappings. Sci. Math. Jpn. 53(1) : 143{148.

Mann, W.R. 1953. Mean value methods in iteration, Proc. Amer. Math. Soc. 4 : 506{510.

Nammanee, K., Noor, M.A. and Suantai S. 2006. Convergence criteria of modies Noor iteration with errors for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 4 :320{334.

Nisrakoo, W. and Saejung S. 2006. A new three-step xed point iteration scheme for asymptotically nonexpansive mappings. Comput. Math. Appl. 18 : 1026{1034.

Schu J. 1991. Weak and strong convergence to xed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43 : 153{159.

Schu J. 1991. Iterative constructions of xed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158 : 407{413.

Takahashi, W. and Kim G.E. 1998. Approximating xed points of nonexpansive mappings in Banach spaces. Math. Japon. 48 (1) : 1{9.

Takahashi, W. and Tamura T. 1997. Limit theorems of operators by convex combinaitons of nonexpansive retractions in Banach spaces. J. Approx. Theory. 91(3) : 386{397.

Takahashi, W. 2000. Iterative methods for approximation of xed points and their applications. J. Oper. Res. Soc. Jpn. 43(1) : 87{108.

Tan, K.K. and Xu H.K. 1993. Zpproximating xed point of nonexpansive mappins by Ishikawaiteration process. J. Math. Anal. Appl. 178 : 301{308.

Xu, H.K. and Ori R.G. 2001.,An implicit iteration process for nonexpansive mappings. Numeric Functional Analysis and optimization. 22 (5-6) : 707{773.

Mann W.R. 1953. Mean value methods in iteration, Proc. Amer. Math. Soc. 4 : 506{510.

Senter, H.F. and Dotson W.G. 1974. Approximating xed points of nonexpansive mappings. Proc. Amer. Math. Soc. 44 : 375{380.

Takahashi, W. and Tamura T. 1998. Convergence theorems for a pair of nonexpansive mappings. J. Convex Anal. 5(1) : 45{56.

Opial, Z. 1967. Weak and convergence of successive approximations for nonexpansive map-ping. Bull. Amer. Math. Soc. 73 : 591{597.

Zhou, H., Agarwal, R.P. , Cho, Y.J. and Kim Y.S.. 2002. Nonexpansive mappings and iterative methods in uniformly convex Banach spaces. Georgian Mathematical Journal. 9 (3) : 591-600.

### Refbacks

- There are currently no refbacks.