Decomposability of Weighted Composition Operators on $L^p$ of Atomic Measure Space
Abstract
Full Text:
PDFReferences
bibitem{Nordgren}
E. A. Nordgen, Composition Operators, Canad. J. Math., 20 (1968), 442--449.
bibitem{Foias}
I. Colojoara, C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
bibitem{Lange}
I. Erdelyi, R. Lange, Spectral Decompositions on Banach Spaces, Springer-Verlag, Berlin, 1977.
bibitem{Rho}
J. C. Rho, J. K. Yoo, (E)-Super-Decomposable Operators, J. Korean Math. Soc. 30 (1993), 211--227.
bibitem{Shapiro}
J. H. Shapiro, Decomposability and the cyclic behavior of parabolic composition operators, North-Holland Mathematics Studies 189 (2001), 143--157.
bibitem{Finch}
J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61--69.
bibitem{Laursen}
K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
bibitem{Mbekhta}
M. Mbekhta, Sur la th'{e}orie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621--631.
bibitem{Dunford1}
N. Dunford, Spectral theory. II. Resolutions of the identity, Pacific J. Math. 2 (1952), 559--614.
bibitem{Dunford2}
N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321--354.
bibitem{Aiena}
P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, New York, 2004.
bibitem{AienaB}
P. Aiena, T. Biondi, Ascent, Descent, Quasi-nilpotent part and Analytic core of operators, Matematicki Vesnik 54 (2002), 57--70.
bibitem{AienaM}
P. Aiena, T. L. Miller, M. M. Neumann, On a Localised Single Valued Extension Property, Mathematical Proceedings of the Royal Irish Academy, 104A (1) (2004), 17--34.
bibitem{Kumar}
P. Kumar, A Study of Composition Operators on $l^p$ spaces, Thesis, Banaras Hindu University, Varanasi(2011).
bibitem{Vrbova}
P. Vrbov'{a}, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483--492.
bibitem{Smith}
R. C. Smith, Local spectral theory for invertible composition operators on $H^p$, Integr. Equat. Oper. Th. 25 (1996), 329--335.
bibitem{Harte}
R. Harte, On Local Spectral Theory II, Functional Analysis, Approximation and Computation
:1 (2010), 67--71.
bibitem{Manhas}
R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, North-Holland, New York, 1993.
bibitem{Singh}
R. K. Singh, T. Veluchamy, Atomic measure spaces and essentially normal composition operators, Bulletin of the Australian Mathematical Society, 27 (1983), 259--267.
bibitem{Trivedi}
S. Trivedi, H. Chandra, Some results on local spectral theory of Composition operators on $l^p$ spaces, textit{to appear in Matematicki Vesnik, $mv.mi.sanu.ac.rs/Papers/MV2013_003.pdf$}
bibitem{Miller}
T. L. Miller, V. G. Miller, M. M. Neumann, Local spectral properties of weighted shifts. J. Operator Theory 1 (2004), 71--88.
Refbacks
- There are currently no refbacks.