On Finite Rank Perturbation of Diagonalizable Operators

Rasoul Eskandari, Farzollah Mirzapour

Abstract


Let $H$ be a Hilbert space. In this paper we give a necessary and  sufficient condition for
a  $\lambda\in\mathbb{C}$ to be  an eigenvalue of the linear
operator $T=D+\sum_{i=1}^{n}u_i\otimes v_i$, where $D$ is a
diagonalizable operator and $u_i, v_i\in H$, $i=1,\ldots,n$.

Full Text:

PDF

References


Q. Fang and J. Xia textsl{ Invariant subspaces for certain finite-rank perturbations of diagonal operator },

J. Funct. Anal., textbf{263} (2012), 1356-1377.

C. Foias, I.B. Jung, E. Ko, C. Pearcy textsl{ Spectral decomposablity of rank-one perturbations of normal operators }, J. Math. Anal. Appl., textbf{375} (2011), 602-609.

C. Foias, I.B. Jung, E. Ko, C. Pearcy textsl{On rank-one perturbations of normal operaors }, J. Funct. Anal., textbf{253} (2007), 628-646.

s. Hamid, C. Onica and C. Pearcy textsl{On the Hyperinvariant Subspace Problem. II }, Indian. Univ. Math. J., Vol. textbf{54(3)} (2005), 743-754.

E.J. Ionascu, textsl{Rank-one perturbations of diagonal operators}, Integr. equ. oper. theory., textbf{39} (2001),

-440.

J. Wiedmann, textsl{Linear Operators in Hilbert Spaces}, Springer-Verlag, New York, 1980.


Refbacks

  • There are currently no refbacks.