Some common coupled fixed point theorems for a pair of occasionally weakly compatible mappings in $S$-metric spaces
Abstract
Full Text:
PDFReferences
bibitem{AM02} M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. {bf 270} (2002), 181-188
bibitem{AR09} M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity generalized metric spaces, Appl. Math. Computation {bf 215} (2009), 262-269.
bibitem{AKR10} M. Abbas, M. Ali Khan and S. Radenovi$acute{c}$, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput. {bf 217} (2010), 195-202.
bibitem{TS08} M. A. Al-Thagafi and N. Shahazad, Generalized $I$-nonexpansive self-maps and invariant approximations, Acta Math. Sinica {bf 24(5)} (2008), 867-876.
bibitem{A11} H. Aydi, Some coupled fixed point results on partial metric spaces, International J. Math. Math. Sci. 2011, Article ID 647091, 11 pages.
bibitem{BK04} G. V. R. Babu and M. V. R. Kameswari, Common fixed point theorems for weakly compatible maps using a contraction quadratic inequality, Adv. Stud. Contemp. Math. {bf 9} (2004), 139-152.
bibitem{B22} S. Banach, Sur les operation dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.
{bf 3}(1922), 133-181.
bibitem{BL06} T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: TMA, {bf 65(7)} (2006), 1379-1393.
bibitem{C12} S. Chauhan, Fixed points of weakly compatible mappings in fuzzy metric spaces satisfying common limit in the range property, Indian J. Math. {bf 54} (2012), 375-397.
bibitem{CL09} L. Ciric and V. Lakshmikantham, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: TMA, {bf 70(12)} (2009), 4341-4349.
bibitem{DHR14} N. V. Dung, N. T. Hieu and S. Radojevi$acute{c}$, Fixed point theorems for $g$-monotone maps on partially ordered $S$-metric spaces, Filomat {bf 28(9)} (2014), 1885-1898.
bibitem{G13} A. Gupta, Cyclic contraction on $S$-metric space, Int. J. Anal. Appl. {bf 3(2)} (2013), 119-130.
bibitem{GL87} D. Guo and V. Lakshmikantham, Coupled fixed point of nonlinear operator with application, Nonlinear Anal. TMA., {bf 11} (1987), 623-632.
bibitem{HLD15} N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasi-contractions for maps on $S$-metric spaces, Thai J. Math. {bf 13(2)} (2015), 369-380.
bibitem{IPC12} M. Imdad, B. D. Pant and S. Chauhan, Fixed point theorems in Menger spaces using $(CLR_{RT})$ property and applications, J. Nonlinear Anal. Optim. {bf 3(2)} (2012), 225-237.
bibitem{J76} G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly {bf 83(4)} (1976), 261-263.
bibitem{J86} G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. {bf 9} (1986), 771-779.
bibitem{J96} G. Jungck, Common fixed points for noncontinuous, nonself maps on nonnumetric spaces, Far East J. Math. Sci. {bf 4(2)} (1996), 195-215.
bibitem{JR98} G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. {bf 29} 1998), 227-238.
bibitem{KSGR16} J. K. Kim, S. Sedghi, A. Gholidahneh and M. M. Rezaee, Fixed point theorems in $S$-metric spaces, East Asian Math. J. {bf 32(5)} (2016), 677-684.
bibitem{KOL17} J. K. Kim, G. A. Okeke and W. H. Lim, Common coupled fixed point theorems for $w$-compatible mappings in partial metric spaces, Global J. Pure Appl. Math. {bf 13(2)} (2017), 519-536.
bibitem{LT11} N. V. Luong and N. X. Thuan, Coupled fixed points theorems for mixed monotone mappings and an application to integral equations, Comput. Math. Appl. {bf 62} (2011), 4238-4248.
bibitem{MS06} Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. {bf 7} (2006), 289-297.
bibitem{NKSS16} H. K. Nashine, J. K. Kim, A. K. Sharma and G. S. Saluja, Some coupled fixed point without mixed monotone mappings, Nonlinear Funct. Anal. Appl. {bf 21(2)} (2016), 235-247.
bibitem{NVA19} F. Nikbakhtasarvestani, S. M. Vaezpour and M. Asadi, Common fixed point theorems for weakly compatible mappings by (CLR) property on partial metric spaces, Indian J. Math. Sci. Inform. {bf 14} (2019), 19-32.
bibitem{OOA12} J. O. Olaleru, G. A. Okeke and H. Akewe, Coupled fixed point theorems for generalized $varphi$-mappings satisfying contractive condition of integral type on cone metric spaces, Int. J. Math. Model. Comput. {bf 2(2)} (2012), 87-98.
bibitem{OT17b} N. Y. $ddot{O}$zg$ddot{u}$r and N. Tas, Some new contractive mappings on $S$-metric spaces and their relationships with the mapping ${bf (S25)}$, Math. Sci. {bf 11(7)} (2017), 7-16.
bibitem{SSZ07} S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in metric spaces, Fixed Point Theory Appl. (2007), 2007(1).
bibitem{SSA12} S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Mat. Vesnik {bf 64(3)} (2012), 258-266.
bibitem{SD14} S. Sedghi and N. V. Dung, Fixed point theorems on $S$-metric spaces, Mat. Vesnik {bf 66(1)} (2014), 113-124.
bibitem{SSSD18} S. Sedghi, N. Shobkolaei, M. Shahraki and T. Dosenovic, Common fixed point of four maps in $S$-metric space, Math. Sci. {bf 12} (2018), 137-143.
bibitem{SK11} W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. (2011), 2011:1-14.
Refbacks
- There are currently no refbacks.