Some common coupled fixed point theorems for a pair of occasionally weakly compatible mappings in $S$-metric spaces

Gurucharan Singh Saluja

Abstract


The aim of this paper is to prove some common coupled fixed point theorems for a pair of occasionally weakly compatible mappings and for a pair of $(CLR_{G})$ property in the framework of $S$-metric spaces by using quadratic inequality. Also, we illustrate an example to validate the result. The results presented in this paper generalize, extend and enrich several previous works from the existing literature.

Full Text:

PDF

References


bibitem{AM02} M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. {bf 270} (2002), 181-188

bibitem{AR09} M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity generalized metric spaces, Appl. Math. Computation {bf 215} (2009), 262-269.

bibitem{AKR10} M. Abbas, M. Ali Khan and S. Radenovi$acute{c}$, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput. {bf 217} (2010), 195-202.

bibitem{TS08} M. A. Al-Thagafi and N. Shahazad, Generalized $I$-nonexpansive self-maps and invariant approximations, Acta Math. Sinica {bf 24(5)} (2008), 867-876.

bibitem{A11} H. Aydi, Some coupled fixed point results on partial metric spaces, International J. Math. Math. Sci. 2011, Article ID 647091, 11 pages.

bibitem{BK04} G. V. R. Babu and M. V. R. Kameswari, Common fixed point theorems for weakly compatible maps using a contraction quadratic inequality, Adv. Stud. Contemp. Math. {bf 9} (2004), 139-152.

bibitem{B22} S. Banach, Sur les operation dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.

{bf 3}(1922), 133-181.

bibitem{BL06} T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: TMA, {bf 65(7)} (2006), 1379-1393.

bibitem{C12} S. Chauhan, Fixed points of weakly compatible mappings in fuzzy metric spaces satisfying common limit in the range property, Indian J. Math. {bf 54} (2012), 375-397.

bibitem{CL09} L. Ciric and V. Lakshmikantham, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: TMA, {bf 70(12)} (2009), 4341-4349.

bibitem{DHR14} N. V. Dung, N. T. Hieu and S. Radojevi$acute{c}$, Fixed point theorems for $g$-monotone maps on partially ordered $S$-metric spaces, Filomat {bf 28(9)} (2014), 1885-1898.

bibitem{G13} A. Gupta, Cyclic contraction on $S$-metric space, Int. J. Anal. Appl. {bf 3(2)} (2013), 119-130.

bibitem{GL87} D. Guo and V. Lakshmikantham, Coupled fixed point of nonlinear operator with application, Nonlinear Anal. TMA., {bf 11} (1987), 623-632.

bibitem{HLD15} N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasi-contractions for maps on $S$-metric spaces, Thai J. Math. {bf 13(2)} (2015), 369-380.

bibitem{IPC12} M. Imdad, B. D. Pant and S. Chauhan, Fixed point theorems in Menger spaces using $(CLR_{RT})$ property and applications, J. Nonlinear Anal. Optim. {bf 3(2)} (2012), 225-237.

bibitem{J76} G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly {bf 83(4)} (1976), 261-263.

bibitem{J86} G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. {bf 9} (1986), 771-779.

bibitem{J96} G. Jungck, Common fixed points for noncontinuous, nonself maps on nonnumetric spaces, Far East J. Math. Sci. {bf 4(2)} (1996), 195-215.

bibitem{JR98} G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. {bf 29} 1998), 227-238.

bibitem{KSGR16} J. K. Kim, S. Sedghi, A. Gholidahneh and M. M. Rezaee, Fixed point theorems in $S$-metric spaces, East Asian Math. J. {bf 32(5)} (2016), 677-684.

bibitem{KOL17} J. K. Kim, G. A. Okeke and W. H. Lim, Common coupled fixed point theorems for $w$-compatible mappings in partial metric spaces, Global J. Pure Appl. Math. {bf 13(2)} (2017), 519-536.

bibitem{LT11} N. V. Luong and N. X. Thuan, Coupled fixed points theorems for mixed monotone mappings and an application to integral equations, Comput. Math. Appl. {bf 62} (2011), 4238-4248.

bibitem{MS06} Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. {bf 7} (2006), 289-297.

bibitem{NKSS16} H. K. Nashine, J. K. Kim, A. K. Sharma and G. S. Saluja, Some coupled fixed point without mixed monotone mappings, Nonlinear Funct. Anal. Appl. {bf 21(2)} (2016), 235-247.

bibitem{NVA19} F. Nikbakhtasarvestani, S. M. Vaezpour and M. Asadi, Common fixed point theorems for weakly compatible mappings by (CLR) property on partial metric spaces, Indian J. Math. Sci. Inform. {bf 14} (2019), 19-32.

bibitem{OOA12} J. O. Olaleru, G. A. Okeke and H. Akewe, Coupled fixed point theorems for generalized $varphi$-mappings satisfying contractive condition of integral type on cone metric spaces, Int. J. Math. Model. Comput. {bf 2(2)} (2012), 87-98.

bibitem{OT17b} N. Y. $ddot{O}$zg$ddot{u}$r and N. Tas, Some new contractive mappings on $S$-metric spaces and their relationships with the mapping ${bf (S25)}$, Math. Sci. {bf 11(7)} (2017), 7-16.

bibitem{SSZ07} S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in metric spaces, Fixed Point Theory Appl. (2007), 2007(1).

bibitem{SSA12} S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in $S$-metric spaces, Mat. Vesnik {bf 64(3)} (2012), 258-266.

bibitem{SD14} S. Sedghi and N. V. Dung, Fixed point theorems on $S$-metric spaces, Mat. Vesnik {bf 66(1)} (2014), 113-124.

bibitem{SSSD18} S. Sedghi, N. Shobkolaei, M. Shahraki and T. Dosenovic, Common fixed point of four maps in $S$-metric space, Math. Sci. {bf 12} (2018), 137-143.

bibitem{SK11} W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math. (2011), 2011:1-14.


Refbacks

  • There are currently no refbacks.