NEW RESULTS OF SPECTRA AND PSEUDOSPECTRA OF MULTIVALUED LINEAR OPERATORS
Abstract
Full Text:
PDFReferences
F. Abdmouleh, T. Alvarez and A. Jeribi, On a characterization of the essential spectra
of a linear relation. (2018), preprint.
T. Alvarez, A. Ammar and A. Jeribi, A Characterization of some subsets of
S-essential spectra of a multivalued linear operator. Colloq. Math. 135, no. 2, 171-186
(2014).
T. Alvarez, A. Ammar and A. Jeribi, On the essential spectra of some matrix of
linear relations. Math. Methods Appl. Sci. 37, no. 5, 620644, (2014).
T. Alvarez, R. W. Cross and D. Wilcox, Multivalued Fredholm type operators with
abstract generalised inverses. J. Math. Anal. Appl. 261, no. 1, 403-417, (2001).
T. Alvarez, Linear relations on hereditarily indecomposable normed spaces. Bull.
Aust. Math. Soc. 84, no. 1, 49-52, (2011).
T. Alvarez, On almost semi-Fredholm linear relations in normed spaces. Glasg. Math.
J. 47 , no. 1, 187-193, (2005).
T. Alvarez, Linear relations on hereditarily indecomposable normed spaces. Bull.
Aust. Math. Soc. 84, no. 1, 49-52 (2011).
A. Ammar and A. Jeribi, A characterization of the essential pseudospectra on a
Banach space. J. Arab. Math., 2 139-145 (2013).
A. Ammar and A. Jeribi, A characterization of the essential pseudospectra and
application to a transport equation. Extracta Math., 28 95-112 (2013).
A. Ammar and A. Jeribi, Measures of noncompactness and essential pseudospectra
on Banach space. Math. Meth. Appl. Sci., 37 447-452 (2014).
A. Ammar, H. Daoud, A. Jeribi, Pseudospectra and essential pseudospectra of
multivalued linear relations. Mediterr. J. Math. 12 , no. 4, 1377-139 (2015).
A. Ammar, H. Daoud and A. Jeribi, The stability of pseudospectra and essential
pseudospectra of linear relations.. J. Pseudo-Dier. Oper. Appl. 7 , no. 4, 473-491
(2016).
A. Ammar, H. Daoud and A. Jeribi, S-pseudospectra and S-essential pseudospectra.
Matematicki Vesnik, 72 no. 2, 95-105 (2020).
R. Arens, Operational calculus of linear relations. Pacic J. Math. 11, 9-23, (1961).
E. A. Coddington, Extension theory of formally normal and symmetric subspaces.
Memoirs of the American Mathematical Society, no. 134. American Mathematical
Society, Providence, R.I, 1973.
R. W. Cross, Multivalued linear operators. Monographs and Textbooks in Pure and
Applied Mathematics, 213. Marcel Dekker, Inc., New York, 1998.
E. B. Davies, Linear operators and their spectra. United States of America by Cambridge University Press, New York, 2007.
A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution
equations. Annali di Matematoca Pura ed Applicata ; 353-384 (1993).
D. Hinrichsen and A. J. Pritchard, Robust stability of linear operators on Banach
spaces. J. Cont. Opt. 32, 1503-1541 (1994).
A. Jeribi, Spectral theory and applications of linear operators and block operator
matrices. Springer-Verlag, New York, 2015.
H. J. Landau, On Szego's eigenvalue distribution theorem and non-Hermitian kernels.
J. Analyse Math. 28, 335-357 (1975).
J. Von. Neumann, Uber adjungierte Funktional-operator en. Ann. Math. 33, 294- 310
(1932).
L. N. Trefethen, Pseudospectra of matrices. Numerical analysis 1991 (Dundee, 1991),
Pitman Res. Notes Math. Ser. 260, Longman Sci. Tech., Harlow 234-266 (1992).
J. M. Varah, The computation of bounds for the invariant subspaces of a general
matrix operator. Thesis (Ph.D.)-Stanford University. ProQuest LLC, Ann Arbor, MI
(1967).
Refbacks
- There are currently no refbacks.