Some approximation results in a non-Archimedean Banach space

Aymen Ammar, Ameni Bouchekoua, Aref Jeribi


Based on the notion of ν-convergence of bounded linear operators defined by A. Mario in [3], we introduce this convergence in a non-Archimedean Banach space and we study its properties. Besides, we introduce the new notion of collectively compact convergence in a non-Archimedean setting.

Full Text:



K. E. Atkinson, The numerical solutions of the eigenvalue problem for com- pact integral operators. Trans. Amer. Math. Soc. 129 1967 458-465, (1967).

P. M. Anselone, Collectively compact operator approximation theory and applications to integral equations. With an appendix by Joel Davis. Prentice- Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, N. J., (1971).

M. Ahues, A. Largillier, L. lain and B. Limaye, Spectral computations for bounded operators. Applied Mathematics (Boca Raton), 18. Chapman & Hall/CRC, Boca Raton, FL, xviii+382 pp. ISBN: 1-58488-196-8, (2001).

A. Ammar, Some properties of the Wolf and Weyl essential spectra of a sequence of linear operators ν-convergent. Indag. Math. (N.S.)28 , no. 2, 424-435, (2017).

A. Ammar and A. Jeribi, The essential pseudo-spectra of a sequence of linear operators. Complex Anal. Oper. Theory 12, no. 3, 835-848, (2018).

A. Ammar, A. Jeribi and N. Lazrag, Sequence of linear operators in non- Archimedean Banach spaces, Mediterranean Journal of Mathematics (2019).

B. Dwork, On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82, 631-648, (1960).

T. Diagana, Non-Archimedean linear operators and applications, Nova Sci- ence Publishers, Inc., Huntington, NY, xiv+92 pp. ISBN: 978-1-60021-405-9, 1-60021-405-3, (2007).

T. Diagana and F. Ramaroson, Non-Archimedean operator theory. Springer- Briefs in Mathematics. Springer, Cham, xiii+156 pp. ISBN: 978-3-319-27322- 8, 978-3-319-27323-5, (2016).

K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen. (German) J. Reine Angew. Math. 128, 1-32, (1905).

A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, Springer-Verlag, New York, (2015).

A. Jeribi, Linear operators and their essential pseudospectra, CRC Press, Boca Raton, (2018).

A. F. Monna, Analyse non-Archimédienne. (French) Ergebnisse der Mathe- matik und ihrer Grenzgebiete, Band 56. Springer-Verlag, Berlin-New York, vii+119 pp, (1970).

J. P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques. (French) Inst. Hautes Études Sci. Publ. Math. No. 12, 69-85, (1962).

W. H. Schikhof, Ultrametric calculus. An introduction to p-adic analy- sis. Cambridge Studies in Advanced Mathematics, 4. Cambridge University Press, Cambridge, viii+306 pp. ISBN: 0-521-24234- 7, (1984).

S. Sánchez-Perales and S. V. Djordjevic, Spectral continuity using ν- convergence. J. Math. Anal. Appl. 433 , no. 1, 405-415(2016).

M. M.Vishik, Non-Archimedean spectral theory. (Russian) Current problems in mathematics, Vol. 25, 51-114, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, (1984).

A. C. M. Van Rooij, Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, x+404 pp. ISBN: 0-8247-6556-7, (1978).


  • There are currently no refbacks.