A modified generalized viscosity explicit methods for quasi-nonexpansive mappings in Banach spaces

Thierno Sow


In this article,  we   introduce and study an iterative
algorithm which is a combination of general iterative method with strongly accretive operator and generalized viscosity explicit methods (GVEM) for finding  fixed points of quasi-nonexpansive mappings in Banach spaces. Under suitable conditions, some strong convergence theorems for finding a common element of the set of solutions of fixed points problems involving quasi-nonexpansive mappings and the set of solutions of variational inequality problem are obtained without imposing any compactness assumption. Finally, applications of our results to quadratic optimization problems  are given.

Full Text:



Ya. Alber, Metric and generalized Projection Operators in Banach space:properties and applications in Theory and

Applications of Nonlinear Operators of Accretive and Monotone Type(A. G Kartsatos, Ed.), Marcel Dekker, New York


[F. E. Browder; Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math.Z.100(1967) 201-225.

Vol. EVIII, part 2, 1976.

I. Cioranescu, Geometry of Banach space, duality mapping and nonlinear problems, Kluwer, Dordrecht,1990.

C. E. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer Verlag Series: Lecture Notes

in Mathematics, Vol. 1965,(2009), ISBN 978-1-84882-189-7.

K. Goebel, and W.A. Kirk, Topics in metric fixed poit theory, Cambridge Studies, in Advanced Mathemathics,. vol, 28,

University Cambridge Press, Cambridge 1990.

[ E. Hairer, S.P. Nrsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer Series

in Computational Mathematics. Springer, Berlin (1993).

W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506-510.

A. Moudafi, Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 4655 (2000).

G. Marino, B. Scardamaglia, , R. Zaccone A general viscosity explicit midpoint rule for quasi-nonexpansive mappings. J.

Nonlinear Convex Anal. 2017, 18, 137-148.

G. Marino and H. K. Xu; A general iterative method for nonexpansive mappings in Hibert spaces, J. Math. Anal. Appl.

(2006), 43-52.

Z. Opial; Weak convergence of sequence of succecive approximation of nonexpansive mapping, Bull. Am. Math. Soc. 73

(1967), 591 597.

Y. Ke, C. Ma, The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory

Appl. 2015, 2015, 190.

J.D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001.

S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis

and Applications, vol. 67, no. 2, pp. 274276, 1979.

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci. Paris 258, 4413-4416


S. Wang, A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces,

Applied Mathematics Letters, 24(2011): 901 - 907.

H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.

H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 240 - 256.

H.K. Xu, M.A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappings

in Hilbert spaces. Fixed Point Theory Appl. 2015, 41 (2015).

Y. Yao, H. Zhou, Y. C. Liou; Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive

mappings, J. Math. Anal. Appl. Comput. 29 (2009) 383-389.

C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374.


  • There are currently no refbacks.