A general fixed point theorem of Meir - Keeler type for mappings satisfying an implicit relation in partial metric spaces

Valeriu POPA, Alina-Mihaela Patriciu

Abstract


In this paper a general theorem of Meir - Keeler type for mappings
satisfying an implicit relation in partial metric spaces, which generalize Theorem 2.3 and Corollary 2.4 \cite{3} is proved.

Full Text:

PDF

References


bibitem{1} T. Abdeljawad, E. Karapinar and K. Tac{s}, Existence and uniqueness of common fixed points on partial metric spaces, Appl. Math. Lett. 24 (1) (2011) 1900 - 1904.

bibitem{2} I. Altun, F. Sola and H. Simsek, Generalized contractions in partial metric spaces, Topology Appl. 197 (18) (2010) 2778 - 2785.

bibitem{3} H. Aydi and E. Karapinar, A Meir - Keeler common fixed point theorem on partial metric spaces, Fixed Point Theory Appl. 2012 2012:26.

bibitem{4} H. Aydi, E. Karapinar and S. Rezapur, A generalized Meir - Keeler type contractions on partial metric spaces, Abstr. and Appl. Analysis 2012, Article ID 287127.

bibitem{5} H. Aydi, M. Jellali and E. Karapinar, Common fixed points for alpha - implicit contractions in partial metric spaces. Consequences and applications, RACSAM, Ser. A Math. (accepted in 2014).

bibitem{6} R. P. Chi, E. Karapinar and T. D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Modelling 55 (2012) 1673 - 1681.

bibitem{7} L. '{C}iri'{c}, P. Samet, H. Aydi and C. Vetro, Common fixed point of generalized contraction on partial metric spaces and applications, Appl. Math. Comput. 218 (2011) 2398 - 2406.

bibitem{8} S. Gulyaz, E. Karapinar, Coupled fixed point results in partially ordered metric spaces through implicit function, Hacet. J. Math. Stat. 43 (4) (2013) 347 - 357.

bibitem{9} S. Gulyaz, E. Karapinar and I. S. Yucas, A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation, Fixed Point Theory Appl. 2013 2013:38.

bibitem{10} G. Jungck, Compatible mappings and common fixed points, Intern. J. Math. Math. Sci. 9 (1986) 771 - 779.

bibitem{11} G. Jungck, Common fixed points for noncontinuous nonself maps on a nonnumeric space, Far East J. Math. Sci. 4 (2) (1996) 199 - 215.

bibitem{12} Z. Kadelburg, H. K. Nashine and S. Radenovi'{c}, Fixed point results under various contractive conditions in partial metric spaces, RACSAM 107 (2013) 241 - 256.

bibitem{13} E. Karapinar and U. Y"{u}ksel, Some common fixed point theorems in partial metric spaces, J. Appl. Math. Volume 2011, Article ID 263621.

bibitem{14} S. Matthews, Partial metric topology, Proc. 8th Summer Conf. General Topology Appl. New York Acad. Sci. 728 (1994) 183 - 192.

bibitem{15} A. Meir and E. Keeler, A theorem of contraction mappings, J. Math. Anal. Appl. 28 (1969) 326 - 329.

bibitem{16} R. P. Pant, Common fixed point of two pairs of commuting mappings, Indian J. Pure Appl. Math. 17 (2) (1986) 187 - 192.

bibitem{17} R. P. Pant, Common fixed points of weakly commuting mappings, Math. Student 62, 1 - 4 (1993) 97 - 102.

bibitem{18} R. P. Pant, Common fixed points for four mappings, Calcutta Math. Soc. 9 (1998) 281 - 287.

bibitem{19} R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998) 281 - 286.

bibitem{20} A.-M. Patriciu and V. Popa, Altering distances, some generalizations of Meir - Keeler theorems and applications, Anal. c{S}t.

Univ. Ovidius Constanc{t}a 21 (2) (2013) 207 - 222.

bibitem{21} V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. c{S}tiinc{t}., Ser. Mat., Univ. Bacu{a}u 7

(1997) 129 - 133.

bibitem{22} V. Popa, Some fixed point theorem for four compatible mappings satisfying an implicit relation, Demontr. Math. 32 (1999) 157 - 163.

bibitem{23} V. Popa, A general common fixed point theorem of Meir - Keeler type for noncontinuous weak compatible mappings, Filomat 18 (2004) 33 - 40.

bibitem{24} K. P. R. Rao, G. N. V. Kishare and P. R. S. Babu, A unique common fixed point theorem of Meir - Keeler type in partial metric spaces, Math. Stat. 1 (2) (2013) 19 - 24.

bibitem{25} C. Vetro and F. Vetro, Common fixed points for mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl. 6 (2013) 152 - 161.


Refbacks

  • There are currently no refbacks.