Genetic diversity and structure analysis of ‘Ak Sakı’ and ‘Kara Sakı’ apple cultivars growing in Erzincan/Türkiye

Emre Sevindik, Filiz Yangılar, Bayram Atasagun, Erengül Sofyalıoğlu, Selçuk Alp Şimşek, Muhammed Ebrar Çayır, Martin Vivodík

Abstract


In this study, ‘Ak Sakı’ and ‘Kara Sakı’ apple cultivars were collected from different locations in Erzincan province, Türkiye, and genetic diversity was determined using the Start Codon Targeted (SCoT) marker technique.The SCoT marker technique was chosen because its gene targeting, long primer, and high annealing temperature make it more effective than other marker techniques. Using ten SCoT primers, 60 bands were obtained, and 42 of them were polymorphic. The polymorphism rate was determined to be 70%. The UPGMA (Unweighted Pair Group Method with Arithmetic mean) dendrogram created using the PAUP 4.0b10 program consists of two clades. The genetic distance between apple cultivars varies between 0.13462 and 0.45614. Principal Component Analysis (PCA) results were compatible with the UPGMA dendrogram. With the SCoT marker technique, genetic diversity among apple cultivars can be determined in a shorter time and with more reliable results.


Keywords


apple, genetic diversity, SCoT, Türkiye

Full Text:

PDF

References


Alzahrani, O.R., Alshehri, M.A., Alasmari, A., Ibrahim, S.D., Oyouni, A.A., & Siddiqui, Z.H. (2023). Evaluation of genetic diversity among Saudi Arabian and Egyptian cultivars of alfalfa (Medicago sativa L.) using ISSR and SCoT markers. Journal of Taibah University for Science, 17(1), 2194187. https://doi.org/10.1080/16583655.2023.2194187

Aprea, E., Gika, H., Carlin, S., Theodoridis, G., Vrhovsek, U., & Mattivi, F. (2011). Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Journal of Chromatography A, 1218(28), 4517–4524. https://doi.org/10.1016/j.chroma.2011.05.019

Boyer, J., & Liu, R. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1), 5.

Chen, Z., Yu, L., Liu, W., Zhang, J., Wang, N., & Chen, X. (2021). Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 162, 267–279. https://doi.org/10.1016/j.plaphy.2021.02.033

Çokran, B.D., Karadeniz, T., & İkten, H. (2019). Analysis of genetic diversity among ‘Misket’ apple clones using AFLP, SSR, and RAPD markers. Erwerbs-Obstbau, 61(3), 293–302. https://doi.org/10.1007/s10341-019-00430-8

Collard, B.C., & Mackill, D.J. (2009). Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27, 86–93. https://doi.org/10.1007/s11105-008-0060-5

Dar, J.A., Wani, A.A., & Dhar, M.K. (2020). Assessment of apple (Malus × domestica Borkh.) germplasm of Kashmir using RAPD markers. International Journal of Fruit Science, 20(3), 635–645. https://doi.org/10.1080/15538362.2019.1639583

Dixon, J., & Hewett, E.W. (2000). Factors affecting apple aroma/flavour volatile concentration: A review. New Zealand Journal of Crop and Horticultural Science, 28(3), 155–173. https://doi.org/10.1080/01140671.2000.9514136

Doğan, A. (2001). Erzincan ilinde yetiştiriciliği yapılan sakı elma çeşitlerinin klon seleksiyonu yoluyla islahı. Yüksek Lisans Tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Erzurum, 75 s.

Eberhardt, M.V., Lee, C.Y., & Liu, R.H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903–904.

Etminan, A., Pour-Aboughadareh, A., Noori, A., Ahmadi-Rad, A., Shooshtari, L., Mahdavian, Z., & Yousefiazar-Khanian, M. (2018). Genetic relationships and diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnology & Biotechnological Equipment, 32(3), 610–617. https://doi.org/10.1080/13102818.2018.1447397

Feng, S., Yi, J., Li, X., Wu, X., Zhao, Y., Ma, Y., & Bi, J. (2021). Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. Journal of Agricultural and Food Chemistry, 69(1), 7–27.

Fotirić Akšić, M., Dabić Zagorac, D., Gašić, U., Tosti, T., Natić, M., & Meland, M. (2022). Analysis of apple fruit (Malus × domestica Borkh.) quality attributes obtained from organic and integrated production systems. Sustainability, 14(9), 5300. https://doi.org/10.3390/su14095300

Geană, E.I., Ciucure, C.T., Ionete, R.E., Ciocârlan, A., Aricu, A., Ficai, A., & Andronescu, E. (2021). Profiling of phenolic compounds and triterpene acids of twelve apple (Malus domestica Borkh.) cultivars. Foods, 10(2), 267.

Guo, J., Yu, X., Yin, H., Liu, G., Li, A., Wang, H., & Kong, L. (2016). Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Systematics and Evolution, 302, 1301–1309. https://doi.org/10.1007/s00606-016-1332-4

Han, Q., Liu, F., Hao, Y., & Ni, Y. (2020). Characterization of membrane-bound polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.). International Journal of Biological Macromolecules, 158, 977–984. https://doi.org/10.1016/j.ijbiomac.2020.04.225

Hyson, D. A. (2011). A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition, 2(5), 408–420. https://doi.org/10.3945/an.111.000513

Inroga, M.M.A.S., da Silva, M.M., Cantillano, R.F.F., Paese, K., Guterres, S.S., Flôres, S.H., & de Oliveira Rios, A. (2021). Apples (Malus domestica Borkh.) minimally processed biofortified with nanoencapsulated β-carotene. Journal of Culinary Science & Technology, 21(3), 356–370. https://doi.org/10.1080/15428052.2021.1948479

Jalilian, H., Zarei, A., & Erfani-Moghadam, J. (2018). Phylogeny relationship among commercial and wild pear species based on morphological characteristics and SCoT molecular markers. Scientia Horticulturae, 235, 323–333. https://doi.org/10.1016/j.scienta.2018.03.020

Kaya, T., Balta, F., & Şensoy, S. (2015). Fruit quality parameters and molecular analysis of apple germplasm resources from Van Lake Basin, Turkey. Turkish Journal of Agriculture and Forestry, 39(6), 864–875. https://doi.org/10.3906/tar-1406-24

Khachtib, Y., Bouda, S., Ait Bella, Y., Zinelabidine, L.H., & Haddioui, A. (2024). Use of ISSR markers for assessing genetic diversity of apple (Malus × domestica) cultivars growing in Morocco. Vegetos, 37, 1619–1626. https://doi.org/10.1007/s42535-023-00712-3

Liu, K., & Muse, S. (2005). PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128–2129.

Najar, Z.H., Zargar, S.A., Kashtwari, M., & Wani, A.A. (2023). Genetic diversity and population structure analysis of apple (Malus × domestica Borkh.) germplasm collected from North Kashmir, India, using SSR markers. Erwerbs-Obstbau, 65, 2207–2218. https://doi.org/10.1007/s10341-023-00974-w

Öztürk, B., Keskin, S., Yıldız, K., Kaya, Ö., Kılıç, K., & Uçar, M. (2013). The effects of pre-harvest napthalene acetic acid and aminoethoxyvinylglycine treatments on storage performance of ‘Ak Sakı’ apple cultivar grown in Erzincan conditions. Journal of Agricultural Faculty of Gaziosmanpasa University, 30(1), 52–60. https://doi.org/10.13002/jafag185

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

Sarkate, A., Banerjee, S., Mir, J.I., Roy, P., & Sircar, D. (2017). Antioxidant and cytotoxic activity of bioactive phenolic metabolites isolated from the yeast-extract treated cell culture of apple. Plant Cell, Tissue and Organ Culture, 130, 641–649. https://doi.org/10.1007/s11240-017-1253-0

Sevindik, E., Uysal, H., & Murathan, Z.T. (2018). Genetic diversity based on ISSR markers of apple genotypes in Ardahan/Turkey. Notulae Scientia Biologicae, 10(4), 554–558. https://doi.org/10.15835/nsb10410347

Swofford, D. L. (2001). PAUP: Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0b10 for 32-bit Microsoft Windows. Sinauer Associates, Sunderland, MA.

Vivodík, M., Balážová, Ž., Chňapek, M., Hromadová, Z., Mikolášová, L., & Gálová, Z. (2023). Genetic relationship of soybean (Glycine max L.) genotypes using SCoT markers. Journal of Microbiology, Biotechnology and Food Sciences, 13(1), e9961. https://doi.org/10.55251/jmbfs.9961

Vivodík, M., Balážová, Ž., Gálová, Z., & Petrovičová, L. (2019). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated castor (Ricinus communis L.) genotypes. Genetika, 51(1), 137–146. https://doi.org/10.2298/GENSR1901137V

Wu, C., Li, T., Qi, J., Jiang, T., Xu, H., & Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT, 122, 109064. https://doi.org/10.1016/j.lwt.2020.109064

Yang, S., Hao, N., Meng, Z., Li, Y., & Zhao, Z. (2021). Identification, comparison, and classification of volatile compounds in peels of 40 apple cultivars by HS–SPME with GC–MS. Foods, 10(5), 1051. https://doi.org/10.3390/foods10051051

Yang, T., Zhang, X., Huang, S., Gao, M., Li, T., & Zhang, S. (2023). Evaluating the genetic diversity of Erythropalum scandens using inter-simple sequence repeat markers. Genetic Resources and Crop Evolution, 70, 2377–2390. https://doi.org/10.1007/s10722-023-01567-y

Yilmaz, A., & Ciftci, V. (2021). Genetic relationships and diversity analysis in Turkish laurel (Laurus nobilis L.) germplasm using ISSR and SCoT markers. Molecular Biology Reports, 48(5), 4537–4547. https://doi.org/10.1007/s11033-021-06474-y

Zarei, A., & Erfani-Moghadam, J. (2021). SCoT markers provide insight into the genetic diversity, population structure and phylogenetic relationships among three Pistacia species of Iran. Genetic Resources and Crop Evolution, 68(4), 1625–1643. https://doi.org/10.1007/s10722-020-01091-3


Refbacks

  • There are currently no refbacks.