Inorganic nanoparticles in biology: drug carriers and auxiliary tools in bioimaging and bioanalytics.
Abstract
Among various nano-scaled materials composed from a spectrum of chemical compounds, inorganic nanoparticles are very attractive due to their physico-chemical properties, as well as their availability, simplicity, possibility of modifications, stability and biocompatibility. They are, on the one hand inevitable tool in advanced analytical chemistry, in particular for studying of biologically-relevant processes, but also important as functional parts of the systems designed for controlled and targeted delivery of medicaments for treatment of a variety of diseases and for imaging. So far, thousands of compounds and systems have been developed for the above-mentioned purposes, but there are only a few reviews dealing with these topics. The aim of this review is, thus, to summarize recent applications of nano-structured inorganic materials in biology-related investigations and to give a future prospective from the standpoint of biology.
Keywords
Full Text:
PDFReferences
Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E., Deamer, D.W. 1999: Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single rna molecules. Biophys. J., 77, 3227–3233. doi: 10.1016/S0006-3495(99)77153-5
Amiri, M., Akbari, A., Ahmadi, M., Pardakhti, A., Salavati-Niasari, M. 2017: Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures. Journal of Molecular Liquids, 249: 1151-1160. doi: 10.1016/j.molliq.2017.11.133
Arakawa, R., Kawasaki, H. 2010: Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci., 26: 1229–1240. doi: 10.2116/analsci.26.1229
Araki, A., Sako, Y., 1987: Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl., 422 (C): 43–52. doi: 10.1016/0378-4347(87)80438-3
Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R., Santamaría, J. 2007: Magnetic nanoparticles for drug delivery. Nano Today, 2: 22–32. doi: 10.1016/S1748-0132(07)70084-1
Avirah, R., Jayaram, D., Adarsh, N., Ramaiah, D. 2012: Squaraine dyes in PDT: from basic design to in vivo demonstration. Org. Biomol. Chem., 10 (5): 911-920. doi: 10.1039/C1OB06588B
Aydoğan, C., El Rassi, Z. 2016: Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with “covalently” incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography. J. Chromatogr. A, 1445: 62–67. doi: 10.1016/j.chroma.2016.03.083
Bayle, C., Issac, C., Salvayre, R., Couderc, F., Caussé, E. 2002: Assay of total homocysteine and other thiols by capillary electrophoresis and laser-induced fluorescence detection: II. Pre-analytical and analytical conditions. J. Chromatogr. A, 979: 255–260. doi: 10.1016/S0021-9673(02)01504-2
Bhattacharyya, S., Kudgus, R.A., Bhattacharya, R., Mukherjee, P. 2011: Inorganic nanoparticles in cancer therapy. Pharm. Res., 28: 237–259. doi: 10.1007/s11095-010-0318-0
Bouccara, S., Sitbon, G., Fragola, A., Loriette, V., Lequeux, N., Pons, T. 2015: Enhancing fluorescence in vivo imaging using inorganic nanoprobes. Curr. Opin. Biotechnol., 34: 65–72. doi: 10.1016/j.copbio.2014.11.018
Brown, S.D., Nativo, P., Smith, J.-A., Stirling, D., Edwards, P.R., Venugopal, B., Flint, D.J., Plumb, J.A., Graham, D., Wheate, N.J. 2010: Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 132: 4678–4684. doi: 10.1021/ja908117a
Casciari, J.J., Sotirchos, S. V., Sutherland, R.M. 1992: Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol., 151: 386–394. doi: 10.1002/jcp.1041510220
Castillo-García, M.L., Aguilar-Caballos, M.P., Gómez-Hens, A. 2016: Nanomaterials as tools in chromatographic methods. TrAC Trends Anal. Chem., 82: 385–393. doi: 10.1016/j.trac.2016.06.019
Caussé, E., Issac, C., Malatray, P., Bayle, C., Valdiguié, P., Salvayre, R., Couderc, F. 2000: Assays for total homocysteine and other thiols by capillary electrophoresis–laser-induced fluorescence detection: I. Preanalytical condition studies. J. Chromatogr. A, 895: 173–178. doi: 10.1016/S0021-9673(00)00672-5
Chen, C.T., Chen, Y.C. 2004: Desorption/ionization mass spectrometry on nanocrystalline titania sol–gel-deposited films. Rapid Commun. Mass Spectrom., 18: 1956–1964. doi: 10.1002/rcm.1572
Chen, C.T., Chen, Y.C. 2005: Fe3O4/TiO2 Core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 77: 5912–5919. doi: 10.1021/AC050831T
Chen, W.Y., Chen, Y.C. 2006: Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal. Bioanal. Chem., 386: 699–704. doi: 10.1007/s00216-006-0427-0
Chen, Y., Chen, H., Shi, J. 2013: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 25: 3144–3176. doi: 10.1002/adma.201205292
Chen, Y., Chen, H., Shi, J. 2014: Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol. Pharm., 11: 2495–2510. doi: 10.1021/mp400596v
Chen, Y., Wan, Y., Wang, Y., Zhang, H., Jiao, Z. 2011: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomedicine, 6: 2321–2326. doi: 10.2147/IJN.S25460
Chen, Z., Geng, Z., Shao, D., Mei, Y., Wang, Z. 2009: Single-crystalline EuF 3 hollow hexagonal microdisks: synthesis and application as a background-free matrix for MALDI-TOF-MS analysis of small molecules and polyethylene glycols. Anal. Chem., 81: 7625–7631. doi: 10.1021/ac901010p
Chen, Z., Penet, M.-F., Nimmagadda, S., Li, C., Banerjee, S.R., Winnard, P.T., Artemov, D., Glunde, K., Pomper, M.G., Bhujwalla, Z.M. 2012: PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano, 6: 7752–7762. doi: 10.1021/nn301725w
Cheng, Y.C., Chen, K.H., Wang, J.-S., Hsu, W.L., Chien, C.C., Chen, W.Y., Tsao, C.W. 2012: Rapid analysis of abused drugs using nanostructured silicon surface assisted laser desorption/ionization mass spectrometry. Analyst, 137,:654–661. doi: 10.1039/C1AN15913E
Cherukuri, P., Glazer, E.S., Curley, S.A. 2010: Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev.. 62: 339–345. doi: 10.1016/j.addr.2009.11.006
Chiang, C.K., Chiang, N.C., Lin, Z.H., Lan, G.Y., Lin, Y.W., Chang, H.T. 2010a: Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J. Am. Soc. Mass Spectrom., 21: 1204–1207. doi: 10.1016/J.JASMS.2010.02.028
Chiang, C.K., Yang, Z., Lin, Y.W., Chen, W.T., Lin, H.J., Chang, H.T. 2010b: Detection of proteins and protein−ligand complexes using hgte nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 82: 4543–4550. doi: 10.1021/ac100550c
Chiu, T.C., Chang, L.C., Chiang, C.K., Chang, H.T. 2008: Determining Estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J. Am. Soc. Mass Spectrom., 19: 1343–1346. doi: 10.1016/j.jasms.2008.06.006
Cho, E.C., Glaus, C., Chen, J., Welch, M.J., Xia, Y. 2010: Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med., 16: 561–573. doi: 10.1016/j.molmed.2010.09.004
Cho, K., Wang, X., Nie, S., Chen, Z., Shin, D.M. 2008: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 14: 1310–1316. doi: 10.1158/1078-0432.CCR-07-1441
Conde, J., Doria, G., Baptista, P. 2012: Noble metal nanoparticles applications in cancer. J. Drug Deliv., 2012: 1–12. doi: 10.1155/2012/751075
Dobrovolskaia, M.A., McNeil, S.E. 2007: Immunological properties of engineered nanomaterials. Nat. Nanotechnol., 2: 469–478. doi: 10.1038/nnano.2007.223
Dong, X., Cheng, J., Li, J., Wang, Y. 2010: Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem., 82: 6208–6214. doi: 10.1021/ac101022m
El-Hussein, A., Mfouo-Tynga, I., Abdel-Harith, M., Abrahamse, H. 2015: Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J. Photochem. Photobiol. B Biol., 153: 67–75. doi: 10.1016/j.jphotobiol.2015.08.028
Frigerio, C., Ribeiro, D.S.M., Rodrigues, S.S.M., Abreu, V.L.R.G., Barbosa, J.A.C., Prior, J.A.V., Marques, K.L., Santos, J.L.M. 2012: Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta, 735: 9–22. doi: 10.1016/J.ACA.2012.04.042
Ge, J., Li, Y., Chen, L. 2006: Characterization of TiO2 /SiO2 based stationary phase for RP‐HPLC. J. Liq. Chromatogr. Relat. Technol., 29: 2329–2339. doi: 10.1080/10826070600864700
Gleiter, H. 1995: Nanostructured materials: state of the art and perspectives. Nanostructured Mater., 6: 3–14. doi: 10.1016/0965-9773(95)00025-9
Gonciar, A. 2014: Detection of intracellular gold nanoparticles. Biotechnol. Mol. Biol. Nanomedicine, 2: 21–25. http://www.researchpub.org/journal/bmbn/bmbn.html
Goya, G., Grazu, V., Ibarra, M. 2008: Magnetic nanoparticles for cancer therapy. Curr. Nanosci., 4: 1–16. doi: 10.2174/157341308783591861
Guénin, E., Lecouvey, M., Hardouin, J. 2009: Could a nano-assisted laser desorption/ionization target improve the study of small organic molecules by laser desorption/ionization time of flight mass spectrometry? Rapid Commun. Mass Spectrom., 23: 1395–1400. doi: 10.1002/rcm.4002
Guihen, E. 2013: Nanoparticles in modern separation science. TrAC Trends Anal. Chem., 46: 1–14. doi: 10.1016/J.TRAC.2013.01.011
Hamidi, M.F.F.A., Harun, W.S.W., Samykano, M., Ghani, S.A.C., Ghazalli, Z., Ahmad, F., Sulong, A.B. 2017: A review of biocompatible metal injection moulding process parameters for biomedical applications. Mater. Sci. Eng. C., 78: 1263-1276 doi: 10.1016/j.msec.2017.05.016
Hou, Z., Zhang, Y., Deng, K., Chen, Y., Li, X., Deng, X., Cheng, Z., Lian, H., Li, C., Lin, J. 2015: UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano, 9: 2584–2599. doi: 10.1021/nn506107c
Hu, L., Xu, S., Pan, C., Zou, H., Jiang, G. 2007: Preparation of a biochip on porous silicon and application for label-free detection of small molecule-protein interactions. Rapid Commun. Mass Spectrom., 21: 1277–1281. doi: 10.1002/rcm.2944
Huang, H.C., Barua, S., Sharma, G., Dey, S.K., Rege, K. 2011: Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release., 155 (3): 344-357. doi: 10.1016/j.jconrel.2011.06.004
Huang, Y.F., Chang, H.T. 2006: Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 78 (5): 1485–1493. doi: 10.1021/AC0517646
Jaskolla, T.W., Papasotiriou, D.G., Karas, M. 2009: Comparison between the matrices α-Cyano-4-hydroxycinnamic acid and 4-chloro-α-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry. J. Proteome Res. 8: 3588–3597. doi: 10.1021/pr900274s
Jim, S.R., Oko, A.J., Taschuk, M.T., Brett, M.J. 2011: Morphological modification of nanostructured ultrathin-layer chromatography stationary phases. J. Chromatogr. A, 1218: 7203–7210. doi: 10.1016/J.CHROMA.2011.08.024
Kailasa, S.K., Kiran, K., Wu, H.F. 2008: Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem., 80: 9681–9688. doi: 10.1021/ac8015664
Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H., Arakawa, R. 2008: Layer-by-layer self-assembled mutilayer films of gold nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem., 80: 7524–7533. doi: 10.1021/ac800789t
Kawasaki, H., Takahashi, N., Fujimori, H., Okumura, K., Watanabe, T., Matsumura, C., Takemine, S., Nakano, T., Arakawa, R. 2009: Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ionization mass spectrometry in environmental analysis. Rapid Commun. Mass Spectrom., 23: 3323–3332. doi: 10.1002/rcm.4254
Kawasaki, H., Yonezawa, T., Watanabe, T., Arakawa, R., 2007. Platinum nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of biomolecules. J. Phys. Chem. C, 111: 16278–16283. doi: 10.1021/JP075159D
Kim, J.I., Park, J.M., Hwang, S.J., Kang, M.J., Pyun, J.C. 2014: Top-down synthesized TiO2 nanowires as a solid matrix for Surface-Assisted Laser Desorption/Ionization Time-Of-Flight (SALDI-TOF) Mass Spectrometry. Anal. Chim. Acta, 836: 53–60. doi: 10.1016/J.ACA.2014.05.041
Kim, Y.R., Kim, S., Choi, J.W., Choi, S.Y., Lee, S.H., Kim, H., Hahn, S.K., Koh, G.Y., Yun, S.H. 2015: Bioluminescence-activated deep-tissue photodynamic therapy of cancer. Theranostics, 5: 805–817. doi: 10.7150/thno.11520
Kuzema, P.A. 2011: Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry. J. Anal. Chem., 66: 1227–1242. doi: 10.1134/S1061934811130065
Larsson, M., Lindgren, J. 2005: Analysis of glutathione and immunoglobulin G inside chromatographic beads using surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc., 36: 394–399. doi: 10.1002/jrs.1304
Lee, J.H., Yeo, Y. 2015. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci., 125: 75–84. doi: 10.1016/j.ces.2014.08.046
Lee, K.H., Chiang, C.K., Lin, Z.H., Chang, H.T. 2007: Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectrom., 21: 2023–2030. doi: 10.1002/rcm.3058
Ling, L.B., Baeyens, W.R.G., Dewaele, C. 1991: Capillary zone electrophoresis with ultraviolet and flourescence detection for the analysis of thiols. Application to mixtures and blood. Anal. Chim. Acta, 255: 283–288. doi: 10.1016/0003-2670(91)80057-Z
Llevot, A., Astruc, D. 2012: Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev., 41: 242–257. doi: 10.1039/C1CS15080D
Lo, C.Y., Lin, J.Y., Chen, W.Y., Chen, C.T., Chen, Y.C. 2008: Surface-Assisted Laser Desorption/Ionization Mass Spectrometry on titania nanotube arrays. J. Am. Soc. Mass Spectrom., 19: 1014–1020. doi: 10.1016/J.JASMS.2008.04.025
López-Dávila, V., Seifalian, A.M., Loizidou, M. 2012: Organic nanocarriers for cancer drug delivery. Curr. Opin. Pharmacol., 12: 414–419. doi: 10.1016/J.COPH.2012.02.011
López, T., Recillas, S., Guevara, P., Sotelo, J., Alvarez, M., Odriozola, J.A. 2008: Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. Acta Biomater., 4: 2037–2044. doi: 10.1016/j.actbio.2008.05.027
Lucena, R., Simonet, B.M., Cárdenas, S., Valcárcel, M. 2011: Potential of nanoparticles in sample preparation. J. Chromatogr. A, 1218: 620–637. doi: 10.1016/J.CHROMA.2010.10.069
Lucky, S.S., Soo, K.C., Zhang, Y. 2015: Nanoparticles in photodynamic therapy. Chem. Rev., 115: 1990–2042. doi: 10.1021/cr5004198
Mari, C., Pierroz, V., Rubbiani, R., Patra, M., Hess, J., Spingler, B., Oehninger, L., Schur, J., Ott, I., Salassa, L., Ferrari, S., Gasser, G. 2014: DNA intercalating RuIIpolypyridyl complexes as effective photosensitizers in photodynamic therapy. Chem. - A Eur. J., 20 (44): 14421–14436. doi: 10.1002/chem.201402796
Mc Carthy, D.J., Malhotra, M., O’Mahony, A.M., Cryan, J.F., O’Driscoll, C.M. 2015: Nanoparticles and the blood-brain barrier: Advancing from in-vitro models towards therapeutic significance. Pharm. Res., 32 (4): 1161–1185. doi: 10.1007/s11095-014-1545-6
McLean, J.A., Stumpo Katherine A., Russell, D.H. 2005: Size-selected (2−10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc., 127: 5304–5305. doi: 10.1021/JA043907W
Mizojiri, K., Shindo, H., Ohno, Y. 1996: The possibility of predicting tissue accumulation after repeated dosing using a single-dose tissue distribution study. J. Toxicol. Sci., 21: 523–527. doi: 10.2131/jts.21.5_523
Monro, A.M. 1994: Are routine tissue distribution studies justifiable for approval of human drugs? Drug Metab. Dispos., 22 (3): 341-342. http://dmd.aspetjournals.org/content/22/3/341
Nešić, M., Popović, I., Leskovac, A., Šaponjić, Z., Radoičić, M., Stepić, M., Petković, M. 2016: Testing the photo-sensitive nanocomposite system for potential controlled metallo-drug delivery. Opt. Quantum Electron., 48: 119–126. doi: 10.1007/s11082-016-0421-5
Nesić, M., Žakula, J., Stepić, M. 2017a: Light controlled metallo-drug delivery system based on the TiO2- nanoparticles and Ru-complex. J. Photochem. Photobiol. A Chem., 347: 55–66. doi: 10.1016/j.jphotochem.2017.06.045
Nesterenko, E.P., Nesterenko, P.N., Connolly, D., He, X., Floris, P., Duffy, E., Paull, B. 2013: Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst, 13: 4229. doi: 10.1039/c3an00508a
Newsome, T.E., Olesik, S. V. 2014: Silica-based nanofibers for electrospun ultra-thin layer chromatography. J. Chromatogr. A, 1364: 261–270. doi: 10.1016/J.CHROMA.2014.08.065
Northen, T.R., Yanes, O., Northen, M.T., Marrinucci, D., Uritboonthai, W., Apon, J., Golledge, S.L., Nordström, A., Siuzdak, G. 2007: Clathrate nanostructures for mass spectrometry. Nature, 449: 1033–1036. doi: 10.1038/nature06195
Okuno, S., Arakawa, R., Okamoto, K., Matsui, Y., Seki, S., Kozawa, T., Tagawa, S., Wada, Y. 2005: Requirements for Laser-Induced Desorption/Ionization on Submicrometer Structures. Anal. Chem., 77: 5364–5369. doi: 10.1021/AC050504L
Oliveira, W.F., Arruda, I.R.S., Silva, G.M.M., Machado, G., Coelho, L.C.B.B., Correia, M.T.S. 2017: Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater. Sci. Eng. C., 81: 597-606. doi: 10.1016/j.msec.2017.08.017
Padro, D., Howes, A.P., Smith, M.E., Dupree, R. 2000: Determination of titanium NMR parameters of ATiO3 compounds: Correlations with structural distortion. Solid State Nucl. Magn. Reson., 15 (4): 231–236. doi: 10.1016/S0926-2040(99)00061-2
Pandey, A. 2017: An overview on advances in the nanocarriers drug delivery systems. In: EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials: 65–76, Springer, New Delhi. doi: 10.1007/978-81-322-3655-9_3
Pansare, V., Hejazi, S., Faenza, W., Prud ’homme, R.K. 2012: Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem. Mater., 24 (5): 812-827. doi: 10.1021/cm2028367
Pastorin, G., Wu, W., Wieckowski, S., Briand, J.P., Kostarelos, K., Prato, M., Bianco, A. 2006: Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun., 0 (11): 1182. doi: 10.1039/b516309a
Petković, M., Schiller, J., Müller, J., Müller, M., Arnold, K., Arnhold, J. 2001a: The signal-to-noise ratio as the measure for the quantification of lysophospholipids by matrix-assisted laser desorption/ ionisation time-of-flight mass spectrometry. Analyst 126: 1042–1050. doi: 10.1039/b101921j
Petković, M., Schiller, J., Müller, M., Benard, S., Reichl, S., Arnold, K., Arnhold, J. 2001b: Detection of individual phospholipids in lipid mixtures by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: phosphatidylcholine prevents the detection of further species. Anal. Biochem., 289: 202–216. doi: 10.1006/abio.2000.4926
Pietzsch, J., Julius, U., Hanefeld, M. 1997: Rapid determination of total homocysteine in human plasma by using N(O,S)-ethoxycarbonyl ethyl ester derivatives and gas chromatography-mass spectrometry. Clin. Chem., 43: 2001–2004. http://www.ncbi.nlm.nih.gov/pubmed/9342032
Popović, I., Milovanović, D., Miletić, J., Nešić, M., Vranješ, M., Šaponjić, Z., Petković, M. 2016a: Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals’ size and shape. Opt. Quantum Electron. 48 (2): 113. doi: 10.1007/s11082-016-0413-5
Popović, I., Nešić, M., Nišavić, M., Vranješ, M., Radetić, T., Šaponjić, Z., Masnikosa, R., Petković, M. 2015: Suitability of TiO2 nanoparticles and prolate nanospheroids for laser desorption/ionization mass spectrometric characterization of bipyridine-containing complexes. Mater. Lett., 150: 84–88. doi: 10.1016/J.MATLET.2015.03.004
Popović, I., Nešić, M., Vranješ, M., Šaponjić, Z., Petković, M. 2016b: SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. Anal. Bioanal. Chem., 408: 7481–7490. doi: 10.1007/s00216-016-9846-8
Popović, I., Nešić, M., Vranješ, M., Šaponjić, Z., Petković, M. 2016: TiO2 nanocrystals – assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. RSC Adv., 6: 1027–1036. doi: 10.1039/C5RA20042C
Pyrzynska, K. 2013: Use of nanomaterials in sample preparation. TrAC Trends Anal. Chem., 43: 100–108. doi: 10.1016/J.TRAC.2012.09.022
Radisavljević, M., Kamčeva, T., Vukićević, I., Radoičić, M., Šaponjić, Z., Petković, M. 2012: Colloidal TiO2 nanoparticles as substrates for M(S)ALDI mass spectrometry of transition metal complexes. Rapid Commun. Mass Spectrom., 26: 2041–2050. doi: 10.1002/rcm.6320
Radović, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antić, B., Spasojević, V., Nikolić, N., Janković, D., Mirković, M., Vranješ-Đurić, S. 2015: Preparation and in vivo evaluation of multifunctional 90 Y-labeled magnetic nanoparticles designed for cancer therapy. J. Biomed. Mater. Res. Part A, 103: 126–134. doi: 10.1002/jbm.a.35160
Rafii, M., Elango, R., Courtney, M.G., House, J.D., Fisher, L., Pencharz, P.B. 2007: High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry. Anal. Biochem., 371: 71–81. doi: 10.1016/j.ab.2007.07.026
Rajh, T., Šaponjić, Z., Liu, J., Dimitrijević, N.M., Scherer, N.F., Arroyo, V.M., Zapol, P., Curtiss, L.A., Thurnauer, M.C. 2004: Charge transfer across the nanocrystalline-DNA interface: probing DNA recognition. Nano Lett., 4: doi: 1017–1023. 10.1021/NL049684P
Rawat, M., Singh, D., Saraf, S., Saraf, S. 2006: Nanocarriers: promising vehicle for bioactive drugs. Biol. Pharm. Bull., 29: 1790–1798. doi: 10.1248/bpb.29.1790
Rodriguez, J.A., Liu, G., Jirsak, T., Hrbek, J., Chang, Z., Dvorak, J., Maiti, A. 2002: Activation of gold on titania: Adsorption and reaction of SO2 on Au/TiO2 (110). J. Am. Chem. Soc., 124 (18): 5242–5250. doi: 10.1021/ja020115y
Schoiswohl, J., Kresse, G., Surnev, S., Sock, M., Ramsey, M.G., Netzer, F.P. 2004: Planar vanadium oxide clusters: two-dimensional evaporation and diffusion on Rh(111). Phys. Rev. Lett., 92 (20). doi: 10.1103/PhysRevLett.92.206103
Scida, K., Stege, P.W., Haby, G., Messina, G.A., García, C.D. 2011: Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Anal. Chim. Acta, 691: 6–17. doi: 10.1016/j.aca.2011.02.025
Shadab, M., Shalini, G., Sana, F., Saurabh, S. 2015: Nanotechnology as carriers for chemotherapeutics: future of drug delivery. World Journal of Pharmaceutical Research, 4 (3): 923–946. http://www.wjpr.net/download/article/1425182641.pdf
Sherrod, S.D., Diaz, A.J., Russell, W.K., Cremer, P.S., Russell, D.H. 2008: Silver nanoparticles as selective ionization probes for analysis of olefins by Mass Spectrometry. Anal. Chem., 80: 6796–6799. doi: 10.1021/ac800904g
Sims, C.M., Hanna, S.K., Heller, D.A., Horoszko, C.P., Johnson, M.E., Montoro Bustos, A.R., Reipa, V., Riley, K.R., Nelson, B.C. 2017: Redox-active nanomaterials for nanomedicine applications. Nanoscale, 9: 15226–15251. doi: 10.1039/C7NR05429G
Singh, R., Lillard, J.W., 2009. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 86: 215–223. doi: 10.1016/J.YEXMP.2008.12.004
Song, Z., Cai, T., Chang, Z., Liu, G., Rodriguez, J.A., Hrbek, J. 2003: Molecular level study of the formation and the spread of MoO3 on Au (111) by scanning tunneling microscopy and X-ray photoelectron spectroscopy. J. Am. Chem. Soc., 125: 8059–8066. doi: 10.1021/ja034862m
Speltini, A., Merli, D., Profumo, A. 2013: Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review. Anal. Chim. Acta, 783: 1–16. doi: 10.1016/J.ACA.2013.03.041
Sperling, R.A., Parak, W.J. 2010: Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368 (1915): 1333–1383. doi: 10.1098/rsta.2009.0273
Sunner, J., Dratz, E., Chen, Y.C. 1995: Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem., 67 (23): 4335–4342. doi: 10.1021/ac00119a021
Tang, H.W., Ng, K.M., Lu, W., Che, C.M. 2009: Ion desorption efficiency and internal energy transfer in carbon-based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry: desorption mechanism(s) and the design of SALDI substrates. Anal. Chem., 81 (12): 4720–4729. doi: 10.1021/ac8026367
Tang, S., Guo, Y., Xiong, C., Liu, S., Liu, X., Jiang, S. 2014: Nanoparticle-based monoliths for chromatographic separations. The Analyst, 139 (17): 4103. doi: 10.1039/C4AN00593G
Tasciotti, E., Liu, X., Bhavane, R., Plant, K., Leonard, A.D., Price, B.K., Cheng, M.M.C., Decuzzi, P., Tour, J.M., Robertson, F., Ferrari, M. 2008: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol., 3 (3): 151–157. doi: 10.1038/nnano.2008.34
Teng, I.T., Chang, Y.J., Wang, L.S., Lu, H.Y., Wu, L.C., Yang, C.M., Chiu, C.C., Yang, C.H., Hsu, S.L., Ho, J.A. 2013: Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34 (30): 7462–7470. doi: 10.1016/j.biomaterials.2013.06.001
Teruyuki, S., Hiroaki, S., Atsushi, Y., Atsushi, N., Masaki, T., Hiroaki, T. 2007: Matrix-free Laser Desorption/Ionization-Mass Spectrometry using self-assembled germanium nanodots. Anal. Chem., 79 (13): 4827–4832. doi: 10.1021/AC062216A
Tholey, A., Moghaddam, Z.M., Heinzle, E. 2006: Quantification of peptides for the monitoring of protease-catalyzed reactions by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry using ionic liquid matrixes. Anal. Chem., 78 (1): 291–297. doi: 10.1021/AC0514319
Thompson, D.G., Enright, A., Faulds, K., Smith, W.E., Graham, D. 2008: Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem., 80 (8): 2805–2810. doi: 10.1021/ac702403w
Trudeau, M.L., Ying, J.Y. 1996: Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity. Nanostructured Mater., 7: 245–258. doi: 10.1016/0965-9773(95)00308-8
Valcárcel, M., Cárdenas, S., Simonet, B.M. 2007: Role of carbon nanotubes in analytical science. Anal. Chem., 79 (13): 4788–4797. doi: 10.1021/AC070196M
Valden, M., Lai, X., Goodman, D.W. 1998: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281 (5383): 1647–1650. doi: 10.1126/SCIENCE.281.5383.1647
Walker, B.N., Stolee, J.A., Pickel, D.L., Retterer, S.T., Vertes, A. 2010: Tailored silicon nanopost arrays for resonant nanophotonic ion production. J. Phys. Chem. C, 114 (11): 4835–4840. doi: 10.1021/jp9110103
Wang, T., Jiang, H., Wan, L., Zhao, Q., Jiang, T., Wang, B., Wang, S. 2015: Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater., 13: 354–363. doi: 10.1016/j.actbio.2014.11.010
Wang, Y., Song, S., Liu, J., Liu, D., Zhang, H. 2015: ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew. Chemie - Int. Ed., 54 (2): 536–540. doi: 10.1002/anie.201409519
Watanabe, T., Kawasaki, H., Yonezawa, T., Arakawa, R. 2008: Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass Spectrom., 43 (8): 1063–1071. doi: 10.1002/jms.1385
Wei, J., Buriak, J.M., Siuzdak, G. 1999: Desorption–ionization mass spectrometry on porous silicon. Nature, 399 (6733): 243–246. doi: 10.1038/20400
Will, O., Purkayastha, S., Chan, C., Athanasiou, T., Darzi, A.W., Gedroyc, W., Tekkis, P.P. 2006: Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol., 7 (1): 52–60. doi: 10.1016/S1470-2045(05)70537-4
Wu, H.P., Su, C.L., Chang, H.C., Tseng, W.L. 2007: Sample-first preparation: a method for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry analysis of cyclic oligosaccharides. Anal. Chem., 79 (16): 6215–6221. doi: 10.1021/AC070847E
Yang, C., Uertzc, J., Yohan, D., Chithrani, B. D. 2014: Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale, 60 (20): 12026-12033. doi: 10.1039/C4NR02535K
Yin, Q., Shen, J., Zhang, Z., Yu, H., Li, Y. 2013: Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv. Drug Deliv. Rev., 65 (13): 1699–1715. doi: 10.1016/j.addr.2013.04.011
Yoon, H.Y., Jeon, S., You, D.G., Park, J.H., Kwon, I.C., Koo, H., Kim, K., 2017. Inorganic nanoparticles for image-guided therapy. Bioconjug. Chem. 28, 124–134. doi: 10.1021/acs.bioconjchem.6b00512
Yu, M., Zheng, J., 2015. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano, 9 (7): 6655–6674. doi: 10.1021/acsnano.5b01320
Zhang, B.T., Zheng, X., Li, H.F., Lin, J.M. 2013: Application of carbon-based nanomaterials in sample preparation: A review. Anal. Chim. Acta, 784: 1–17. 10.1016/J.ACA.2013.03.054
Zhang, H., Shan, Y., Dong, L. 2014: A Comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J. Biomed. Nanotechnol., 10 (8): 1450–1457. doi: 10.1166/jbn.2014.1961
Zhang, H., Wang, C., Chen, B., Wang, X., 2012. Daunorubicin-TiO2 nanocomposites as a “smart ” pH-responsive drug delivery system. Int. J. Nanomedicine, 7, 235–242. doi: 10.2147/IJN.S27722
Zhang, M., Qiu, H. 2015: Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography. TrAC Trends Anal. Chem., 65: 107–121. doi: 10.1016/J.TRAC.2014.10.008
Zhang, Z., Wang, Z., Liao, Y., Liu, H. 2006: Applications of nanomaterials in liquid chromatography: Opportunities for separation with high efficiency and selectivity. J. Sep. Sci., 29: 1872–1878. doi: 10.1016/J.TRAC.2014.10.008
Refbacks
- There are currently no refbacks.