The point spectrum and residual spectrum of upper triangular operator matrices

Xiufeng Wu, Junjie Huang, Alatancang Chen

Abstract


The point and residual spectra of an operator are, respectively, split into 1,2-point spectrum and 1,2-residual spectrum, based on the denseness and closedness of its range. Let $\mathcal{H}$, $\mathcal{K}$ be infinite dimensional complex separable Hilbert spaces and write $M_{X}=\left(\begin{smallmatrix} A & X\\ 0 & B \end{smallmatrix}\right)\in\mathcal{B}(\mathcal{H}\oplus\mathcal{K})$. For given operators %the diagonal entries $A\in \mathcal{B}(\mathcal{H})$ and $B\in\mathcal{B} (\mathcal{K})$, the sets $ \bigcup\limits_{X\in\mathcal{B}(\mathcal{K},\mathcal{H})} \sigma_{*,i}(M_{X})$ $(*=p,r; i=1,2)$, are characterized. Moreover,  we obtain some necessary and sufficient condition such that $\sigma_{*,i}(M_{X})= \sigma_{*,i}(A)\cup\sigma_{*,i}(B)$ $(*=p,r; i=1,2)$ for every $X\in\mathcal{B}(\mathcal{K},\mathcal{H})$.

Refbacks

  • There are currently no refbacks.