Global Well-Posedness in Variable Exponent Besov-Morrey Spaces for the Fractional Porous Medium Equation

Ahmed El Idrissi, Amal Yassine, Brahim El Boukari, Jalila El Ghordaf

Abstract


This paper is concerned with the study of the fractional porous medium equation in variable exponent Besov-Morrey spaces. In the case 1 < β <= 2, by using the Chemin mono-norm method, we prove global well-posedness for small initial data in the critical variable exponent Besov-Morrey spaces N_{r(·),q(·),h}^{2-2m-β+d/q(·)}(R^d)  with  (1-\varepsilon)/2 <m<1+d/(2q(·)),  0<\varepsilon< β-1,  1 ≤ r(·) ≤ q(·) < ∞  and  1 ≤ h ≤ ∞. In the limit case β=1,  we establish the global well-posedness for small initial data in  N_{r(·),q(·),1}^{1-2m+d/q(·)}(R^d)  with  1/2 <m<1+d/(2q(·))  and   1 ≤ r(·) ≤ q(·) < ∞.


Refbacks

  • There are currently no refbacks.