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Abstract. In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions
in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the
coefficients of functions belonging to this analytic and bi-univalent function class. ome interesting recent
developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.

1. Introduction

LetA denote the class of functions f (z) which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

and normalized by the following Taylor-Maclaurin series expansion:

f (z) = z +

∞∑
n=2

anzn. (1.1)

Also let S denote the subclass of functions inAwhich are univalent inU (see, for details, [8]).
It is well known that every function f ∈ S has an inverse f−1, which is defined by

f−1
(

f (z)
)

= z (z ∈ U)

and

f
(

f−1(w)
)

= w
(
|w| < r0( f ); r0( f ) =

1
4

)
, (1.2)
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according to the Koebe One-Quarter Theorem (see, for example, [8]). In fact, the inverse function f−1 is given
by

f−1 (w) = w − a2w2 +
(
2a2

2 − a3

)
w3

−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent inU if both f (z) and f−1(z) are univalent inU. Let Σ denote
the class of analytic and bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1.1).
Some examples of functions in the class Σ are presented below:

z
1 − z

, − log(1 − z),
1
2

log
(1 + z

1 − z

)
,

and so on. However, the familiar Koebe function is not a member of the class Σ. Other common examples
of functions in S such as

z −
z2

2
and

z
1 − z2

are also not members of the class Σ.
For a brief history of functions in the class Σ, see [22] (see also [4], [14], [18] and [25]). In fact, judging by

the remarkable flood of papers on the subject (see, for example, [5–7, 9–12, 15–17, 19–21, 23, 26, 27, 29, 30]),
the recent pioneering work of Srivastava et al.[22] appears to have revived the study of analytic and
bi-univalent functions in recent years (see also [3], [13] and [24]).

The object of the present paper is to introduce a new subclass of the function class Σ and use the Faber
polynomial expansion techniques to derive bounds for the general Taylor-Maclaurin coefficients |an| for the
functions in this class. We also obtain estimates for the first two coefficients |a2| and |a3| of these functions.

2. Bounds Derivable by the Faber Polynomial Expansion Techniques

We begin by introducing the function classN (α,λ)
Σ

by means of the following definition.

Definition. A function f (z) given by (1.1) is said to be in the classN (α,λ)
Σ

(0 5 α < 1; λ = 0) if the following
conditions are satisfied:

f ∈ Σ and <
{
f ′(z) + λz f ′′(z)

}
> α (z ∈ U; 0 5 α < 1; λ = 0). (2.1)

By using the Faber polynomial expansions of functions f ∈ A of the form (1.1), the coefficients of its
inverse map 1 = f−1 may be expressed as follows (see [1] and [2]; see also [12]):

1(w) = f−1(w) = w +

∞∑
n=2

1
n

K−n
n−1 (a2, a3, · · · , an) wn. (2.2)

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n − 1)!

an−1
2 +

(−n)!
(2(−n + 1))!(n − 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n − 4)!
an−4

2 a4

+
(−n)!

(2(−n + 2))!(n − 5)!
an−5

2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n − 6)!

an−6
2 [a6 + (−2n + 5)a3a4] +

∑
j=7

an− j
2 V j,
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where such expressions as (for example) (−n)! are to be interpreted symbolically by

(−n)! ≡ Γ(1 − n) := (−n)(−n − 1)(−n − 2) · · ·
(
n ∈N0 :=N ∪ {0} (N := {1, 2, 3, · · · })

)
(2.3)

and V j (7 5 j 5 n) is a homogeneous polynomial in the variables a2, a3, · · · , an (see, for details, [2]). In
particular, the first three terms of K−n

n−1 are given below:

K−2
1 = −2a2,

K−3
2 = 3

(
2a2

2 − a3

)
and

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.

In general, an expansion of Kp
n is given by (see, for details, [1])

Kp
n = pan +

p(p − 1)
2

D2
n +

p!
(p − 3)!3!

D3
n + · · · +

p!
(p − n)!n!

Dn
n (p ∈ Z)

where

Z := {0,±1,±2, · · · } and Dp
n = Dp

n (a2, a3, · · · )

and, alternatively, by (see, for details, [28])

Dm
n (a1, a2, · · · , an) =

∑(
m!

µ1! · · ·µn!

)
aµ1

1 · · · a
µn
n ,

where a1 = 1 and the sum is taken over all nonnegative integers µ1, · · · , µn satisfying the following condi-
tions:

µ1 + µ2 + · · · + µn = m

µ1 + 2µ2 + · · · + nµn = n.

It is clear that

Dn
n(a1, a2, · · · , an) = an

1 .

Our first main result is given by Theorem 1 below.

Theorem 1. Let f given by (1.1) be in the classNα,λ
Σ

(0 5 α < 1 and λ = 0). If ak = 0 for 2 5 k 5 n − 1, then

|an| 5
2(1 − α)

n[1 + λ(n − 1)]
(n ∈N \ {1, 2}). (2.4)

Proof. For analytic functions f of the form (1.1), we have

f ′(z) + λz f ′′(z) = 1 +

∞∑
n=2

[1 + λ(n − 1)]nanzn−1 (2.5)



H. M. Srivastava et al. / Filomat 29:8 (2015), 1839–1845 1842

and, for its inverse map 1 = f−1, it is seen that

1′(w) + λw1′′(w) = 1 +

∞∑
n=2

[1 + λ(n − 1)]nbnwn−1

= 1 +

∞∑
n=2

[1 + λ(n − 1)]K−n
n−1 (a2, a3, · · · , an) wn−1. (2.6)

On the other hand, since f ∈ Nα,λ
Σ

and 1 = f−1
∈ N

α,λ
Σ

, by definition, there exist two positive real-part
functions

p(z) = 1 +

∞∑
n=1

cnzn

and

q(w) = 1 +

∞∑
n=1

dnwn,

where

<

(
p(z)

)
> 0 and <

(
q(w)

)
> 0 (z,w ∈ U),

so that

f ′(z) + λz f ′′(z) = α + (1 − α)p(z)

= 1 + (1 − α)
∞∑

n=1

K1
n (c1, c2, · · · , cn) zn (2.7)

and

1′(w) + λw1′′(w) = α + (1 − α)q(w)

= 1 + (1 − α)
∞∑

n=1

K1
n (d1, d2, · · · , dn) wn. (2.8)

Thus, upon comparing the corresponding coefficients in (2.5) and (2.7), we get

[1 + λ(n − 1)]nan = (1 − α)K1
n−1 (c1, c2, · · · , cn−1) . (2.9)

Similarly, by using (2.6) and (2.8), we find that

[1 + λ(n − 1)]K−n
n−1(a1, a2, · · · , an) = (1 − α)K1

n−1 (d1, d2, · · · , dn−1) . (2.10)

We note that, for ak = 0 (2 5 k 5 n − 1), we have

bn = −an

and so

[1 + λ(n − 1)]nan = (1 − α)cn−1 (2.11)

and

−[1 + λ(n − 1)]nan = (1 − α)dn−1. (2.12)
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Thus, according to the Carathéodory Lemma (see [8]), we also observe that

|cn| 5 2 and |dn| 5 2 (n ∈N).

Now, taking the moduli in (2.11) and (2.12) and applying the Carathéodory Lemma, we obtain

|an| 5
(1 − α) |cn−1|

n[1 + λ(n − 1)]
=

(1 − α) |dn−1|

n[1 + λ(n − 1)]
5

2(1 − α)
n[1 + λ(n − 1)]

, (2.13)

which evidently completes the proof of Theorem 1.

3. Estimates for the Initial Coefficients a2 and a3

In this section, we choose to relax the coefficient restrictions imposed in Theorem 1 and derive the
resulting estimates for the initial coefficients a2 and a3 of functions f ∈ Nα,λ

Σ
given by the Taylor-Maclaurin

series expansion (1.1). We first state the following theorem.

Theorem 2. Let f given by (1.1) be in the classNα,λ
Σ

(0 5 α < 1 and λ = 0). Then

|a2| 5



√
2(1 − α)

3(1 + 2λ)
, 0 5 α <

1 + 2λ − 2λ2

3(1 + 2λ)

1 − α
1 + λ

,
1 + 2λ − 2λ2

3(1 + 2λ)
5 α < 1

(3.1)

and

|a3| 5
2(1 − α)

3(1 + 2λ)
. (3.2)

Proof. If we set n = 2 by and n = 3 in (2.9) and (2.10), respectively, we obtain

2(1 + λ)a2 = (1 − α)c1, (3.3)

3(1 + 2λ)a3 = (1 − α)c2, (3.4)

−2(1 + λ)a2 = (1 − α)d1 (3.5)

and

3(1 + 2λ)(2a2
2 − a3) = (1 − α)d2. (3.6)

Upon dividing both sides of (3.3) or (3.5) by 2(1+λ), if we take their moduli and apply the Carathéodory
Lemma, we find that

|a2| 5
(1 − α) |c1|

2(1 + λ)
=

(1 − α) |d1|

2(1 + λ)
5

1 − α
1 + λ

. (3.7)

Now, by adding (3.4) to (3.6), we have

6(1 + 2λ)a2
2 = (1 − α)(c2 + d2), (3.8)
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that is,

a2
2 =

(1 − α)(c2 + d2)
6(1 + 2λ)

. (3.9)

Another application of the Carathéodory Lemma followed by taking the square roots in this last equation
(3.9) yields

|a2| 5

√
2(1 − α)

3(1 + 2λ)
, (3.10)

which proves the first assertion (3.1) of Theorem 2.
Next, for

1 + 2λ − 2λ2

3(1 + 2λ)
5 α < 1,

we note that

1 − α
1 + λ

5

√
2(1 − α)

3(1 + 2λ)
. (3.11)

Thus, upon dividing both sides of (3.4) by 3(1 + 2λ), if we take the modulus of each side and apply the
Carathéodory Lemma once again, we get

|a3| 5
2(1 − α)

3(1 + 2λ)
, (3.12)

which completes the proof of the second assertion (3.2) of Theorem 2.
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