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Abstract. We consider the generalized continuous-time Lyapunov equation:

A∗XB + B∗XA = −Q,

where Q is an N × N Hermitian positive definite matrix and A,B are arbitrary N × N matrices. Under
certain conditions, using a coupled fixed point theorem du to Bhaskar and Lakshmikantham combined
with the Schauder fixed point theorem, we establish an existence and uniqueness result of Hermitian
positive definite solution to such equation. Moreover, we provide an iteration method to find convergent
sequences which converge to the solution if one exists. Numerical experiments are presented to illustrate
our theoretical results.

1. Introduction

Consider the generalized continuous-time algebraic Lyapunov equation (GCALE)

A∗XB + B∗XA = −Q (1)

with given matrices Q,A,B and unknown matrix X. Such equations play an important role in stability
theory [6, 18], optimal control problems [14, 17] and balanced model reduction [16]. In [19], it is proved
that (1) has a unique Hermitian, positive definite solution X for every Hermitian positive definite matrix Q
if and only if all eigenvalues of the pencil λA − B are finite and lie in the open left half-plane. When A = I
(the identity matrix), (1) becomes the standard Lyapunov equation

XB + B∗X = −Q. (2)

The classical numerical methods to solve (2) are the Bartels-Stewart method [1], the Hammarling method
[10] and the Hessenberg-Schur method [9]. An extension of these methods to solve (1) with the assumption
A is nonsingular, is given in [5, 7–9, 19]. Other approaches to solve (1) are the sign function method
[4, 13, 15], the ADI method [3, 11, 20].
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In this paper, we consider the equation (1), where Q is an N ×N Hermitian positive definite matrix and
A,B are arbitrary N × N matrices. Using Bhaskar-Lakshmikantham coupled fixed point theorem [2], we
provide a sufficient condition that assures the existence and uniqueness of a Hermitian positive definite
solution to (1). Moreover, we present an algorithm to solve this equation. Numerical experiments are given
to illustrate our theoretical result.

2. Notations and Preliminaries

We shall use the following notations: M(N) denotes the set of all N × N matrices, H(N) ⊂ M(N) is the
set of all N × N Hermitian matrices and P(N) ⊂ H(N) (resp. P(N)) is the set of all N × N positive definite
matrices (resp. positive semidefinite matrices). Instead of X ∈ P(N), we will also write X > 0. Furthermore,
X ≥ 0 means that X is positive semidefinite. As a different notation for X − Y ≥ 0 (X − Y > 0), we will
use X ≥ Y (X > Y). If X,Y ∈ H(N) such that X ≤ Y, then [X,Y] will be the set of all Z ∈ H(N) satisfying
X ≤ Z ≤ Y. If X,Y ∈ H(N) such that X < Y, then ]X,Y[ will be the set of all Z ∈ H(N) satisfying X < Z < Y.
We denote by ‖ · ‖ the spectral norm, i.e., ‖A‖ =

√
λ+(A∗A), where λ+(A∗A) is the largest eigenvalue of A∗A.

The N × N identity matrix will be written as I. It turns out that it is convenient here to use the metric
induced by the trace norm ‖ · ‖1. Recall that this norm is given by ‖A‖1 =

∑n
j=1 s j(A), where s j(A), j = 1, . . . ,n

are the singular values of A. In fact, we shall use a slight modification of this norm. For Q ∈ P(N), we
define ‖A‖1,Q = ‖Q1/2AQ1/2

‖1. For any U ∈ M(N), we denote by Sp(U) the spectrum of U, i.e., the set of its
eigenvalues.

The following lemmas will be useful later.

Lemma 2.1 (See [21]). Let A ≥ 0 and B ≥ 0 be N ×N matrices. Then

0 ≤ tr(AB) ≤ ‖A‖ tr(B).

Here, for T ∈M(N), tr(T) denotes the trace of the matrix T.

Lemma 2.2 (See [12]). Let A ∈ H(n) such that −I < A < I. Then ‖A‖ < 1.

Definition 2.3. Let (∆,≤) be a partially ordered set. We say that a mapping F : ∆×∆→ ∆ has the mixed monotone
property if

(X,Y), (J,K) ∈ ∆ × ∆, X ≤ J, Y ≥ K =⇒ F(X,Y) ≤ F(J,K).

The proof of our main result is based on the following coupled fixed point theorem posed in a metric
space endowed with a partial order.

Lemma 2.4 (Bhaskar and Lakshmikantham [2]). Let (∆,≤) be a partially ordered set and d be a metric on X such
that (∆, d) is a complete metric space. Let F : ∆ × ∆→ ∆ be a continuous mapping. Suppose that

(i) F has the mixed monotone property;

(ii) there exists some δ ∈ [0, 1) such that

d(F(x, y),F(u, v)) ≤
δ
2

[d(x,u) + d(y, v)], x ≥ u, y ≤ v;

(iii) there exists (x0, y0) ∈ ∆ × ∆ such that x0 ≤ F(x0, y0), y0 ≥ F(y0, x0);

(iv) for every (x, y) ∈ ∆ × ∆, there exists z ∈ ∆ such that x ≤ z, y ≤ z.

Then there exists a unique x∗ ∈ ∆ such that F(x∗, x∗) = x∗. Moreover,

(v) the sequences {xn} and {yn} defined by

xn+1 = F(xn, yn), yn+1 = F(yn, xn)

converge to x∗.
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3. Main Results

Let
U =

A − B + I
√

2
, V =

A + B + I
√

2
, W = B − I.

Our first result is the following.

Theorem 3.1. Suppose that there exists (Q̃,M) ∈ P(N) × P(N) such that

(a) 2(UQ̃U∗ + BQ̃B∗) < Q̃;
(b) 2(VQ̃V∗ + WQ̃W∗) < Q̃;
(c) U∗MU + B∗MB < M − (V∗MV + W∗MW);
(d) Q ∈]U∗MU + B∗MB,M − (V∗MV + W∗MW)[.

Then
(i) (1) has one and only one solution X̂ ∈ P(N);

(ii) X̂ ∈ [Q − (U∗MU + B∗MB),Q + (V∗MV + W∗MW)].

Proof. At first, observe that (1) is equivalent to

X = Q + (V∗XV + W∗XW) − (U∗XU + B∗XB). (3)

Consider the continuous mapping F : H(N) ×H(N)→ H(N) defined by

F(X,Y) = Q + (V∗XV + W∗XW) − (U∗YU + B∗YB), for all X,Y ∈ H(N). (4)

Then (3) is equivalent to

X = F(X,X). (5)

Observe that F has the mixed monotone property. Indeed, for any X,Y, J,K ∈ H(N) such that X ≤ J and
Y ≥ K, we have

F(X,Y) = Q + (V∗XV + W∗XW) − (U∗YU + B∗YB)
≤ Q + (V∗ JV + W∗ JW) − (U∗KU + B∗KB)
= F(J,K).

Now, let X,Y, J,K ∈ H(N) such that X ≥ J and Y ≤ K. We have

‖F(X,Y) − F(J,K)‖1,Q̃ = tr
(
Q̃1/2(F(X,Y) − F(J,K))Q̃1/2

)
= tr

(
Q̃1/2(V∗(X − J)V + W∗(X − J)W + U∗(K − Y)U + B∗(K − Y)B)Q̃1/2

)
= tr

(
Q̃1/2(V∗(X − J)V + W∗(X − J)W)Q̃1/2

)
+ tr

(
Q̃1/2(U∗(K − Y)U + B∗(K − Y)B)Q̃1/2

)
.

On the other hand, using Lemma 2.1, we obtain

tr
(
Q̃1/2(V∗(X − J)V + W∗(X − J)W)Q̃1/2

)
= tr

(
VQ̃V∗(X − J) + WQ̃W∗(X − J)

)
= tr

(
VQ̃V∗(X − J)Q̃1/2Q̃−1/2 + WQ̃W∗(X − J)Q̃1/2Q̃−1/2

)
= tr

(
Q̃−1/2VQ̃V∗(X − J)Q̃1/2 + Q̃−1/2WQ̃W∗(X − J)Q̃1/2

)
= tr

(
Q̃−1/2VQ̃V∗Q̃−1/2Q̃1/2(X − J)Q̃1/2 + Q̃−1/2WQ̃W∗Q̃−1/2Q̃1/2(X − J)Q̃1/2

)
≤

∥∥∥∥Q̃−1/2VQ̃V∗Q̃−1/2 + Q̃−1/2WQ̃W∗Q̃−1/2
∥∥∥∥ tr

(
Q̃1/2(X − J)Q̃1/2

)
=

∥∥∥∥Q̃−1/2(VQ̃V∗ + WQ̃W∗)Q̃−1/2
∥∥∥∥ tr

(
Q̃1/2(X − J)Q̃1/2

)
=

∥∥∥∥Q̃−1/2(VQ̃V∗ + WQ̃W∗)Q̃−1/2
∥∥∥∥ ‖X − J‖1,Q̃ := E1.
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Then

tr
(
Q̃1/2(V∗(X − J)V + W∗(X − J)W)Q̃1/2

)
≤ E1. (6)

Similarly, we have

tr
(
Q̃1/2(U∗(K − Y)U + B∗(K − Y)B)Q̃1/2

)
≤ E2, (7)

where
E2 :=

∥∥∥∥Q̃−1/2(UQ̃U∗ + BQ̃B∗)Q̃−1/2
∥∥∥∥ ‖K − Y‖1,Q̃.

Now, using (6) and (7), we get

‖F(X,Y) − F(J,K)‖1,Q̃ ≤
δ
2

(
‖X − J‖1,Q̃ + ‖K − Y‖1,Q̃

)
,

where
δ = 2 max

{∥∥∥∥Q̃−1/2(VQ̃V∗ + WQ̃W∗)Q̃−1/2
∥∥∥∥ , ∥∥∥∥Q̃−1/2(UQ̃U∗ + BQ̃B∗)Q̃−1/2

∥∥∥∥} .
Observe that from Lemma 2.2, (a) and (b), we have δ ∈ (0, 1). On the other hand, Taking X0 = 0 and Y0 = M,
from (c) and (d), we have

X0 < F(X0,Y0) and Y0 > F(Y0,X0). (8)

Then we proved that all the conditions of Lemma 2.4 are satisfied. Note that conditions (iv) of Lemma 2.4
hold in the case ∆ = H(N). We deduce that there exists a unique X̂ ∈ H(N) solution to (5).

Now, to establish our result, we need to prove that X̂ ∈ P(N). The Schauder fixed point theorem will be
useful in this step. Define the mapping G : [F(0,M),F(M, 0)]→ H(N) by

G(X) = F(X,X), X ∈ [F(0,M),F(M, 0)].

Note that from (8) and the mixed monotone property of F, we have

F(0,M) ≤ F(M, 0).

Let X ∈ [F(0,M),F(M, 0)], i.e.,
F(0,M) ≤ X ≤ F(M, 0).

Using the mixed monotone property of F, we get

F(F(0,M),F(M, 0)) ≤ F(X,X) = G(X) ≤ F(F(M, 0),F(0,M)).

On the other hand, from (8), we have

0 < F(0,M) and M > F(M, 0).

Again, using the mixed monotone property of F, we get

F(F(M, 0),F(0,M)) ≤ F(M, 0) and F(F(0,M),F(M, 0)) ≥ F(0,M).

Then
F(0,M) ≤ G(X) ≤ F(M, 0).

Thus we proved that G([F(0,M),F(M, 0)]) ⊆ [F(0,M),F(M, 0)], i.e., G maps the compact convex set [F(0,M),F(M, 0)]
into itself. Since G is continuous, it follows from Schauder’s fixed point theorem that G has at least one
fixed point in this set. However, fixed points of G are solutions to (1), and we proved already that (1) has a
unique Hermitian solution. Then this solution must be in the set [F(0,M),F(M, 0)], i.e.,

X̂ ∈ [Q − (U∗MU + B∗MB),Q + (V∗MV + W∗MW)] ⊂ P(N).

Then Theorem 3.1 is proved.
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Remark 3.2. Note that in the proof of the above theorem, we cannot apply the Banach contraction principle to the
mapping G. Indeed, the inequalities (6) and (7) are satisfied only for X ≥ J and Y ≤ K. Recall that the proof of these
inequalities is based on Lemma 2.1 which requires that B ≥ 0.

Theorem 3.3. Suppose that all the assumptions of Theorem 3.1 hold. Let {Xn} and {Yn} be the sequences defined by
X0 = 0 (zero matrix), Y0 = M, and{

Xn+1 = Q + (V∗XnV + W∗XnW) − (U∗YnU + B∗YnB),
Yn+1 = Q + (V∗YnV + W∗YnW) − (U∗XnU + B∗XnB). (9)

Then
lim
n→∞
‖Xn − X̂‖ = lim

n→∞
‖Yn − X̂‖ = 0.

Proof. It follows immediately from (v) of Lemma 2.4.

Now, we present some consequences following from Theorems 3.1 and 3.3, when A,B are Hermitian
matrices. Our first consequence is the following.

Corollary 3.4. Suppose that

(a) A,B ∈ H(N);
(b) 2(UQU + BQB) < Q;
(c) 2(VQV + WQW) < Q.

Then

(i) (1) has one and only one solution X̂ ∈ P(N);
(ii) X̂ ∈ [Q − 2(UQU + BQB),Q + 2(VQV + WQW)].

(iii) Moreover, let (Xn) and (Yn) the sequences defined by X0 = 0, Y0 = 2Q, and{
Xn+1 = Q + (VXnV + WXnW) − (UYnU + BYnB),
Yn+1 = Q + (VYnV + WYnW) − (UXnU + BXnB).

We have
lim
n→∞
‖Xn − X̂‖ = lim

n→∞
‖Yn − X̂‖ = 0.

Proof. It follows from Theorems 3.1 and 3.3 with Q̃ = Q and M = 2Q.

Corollary 3.5. Suppose that

(a) A,B ∈ H(N);
(b) 2(U2 + B2) < I, 2(V2 + W2) < I;
(c) U2 + B2 < Q < I − (V2 + W2).

Then

(i) (1) has one and only one solution X̂ ∈ P(N);
(ii) X̂ ∈ [Q − (U2 + B2),Q + (V2 + W2)].

(iii) Moreover, let (Xn) and (Yn) the sequences defined by X0 = 0, Y0 = I, and{
Xn+1 = Q + (VXnV + WXnW) − (UYnU + BYnB),
Yn+1 = Q + (VYnV + WYnW) − (UXnU + BXnB).

We have
lim
n→∞
‖Xn − X̂‖ = lim

n→∞
‖Yn − X̂‖ = 0.

Proof. It follows from Theorems 3.1 and 3.3 with Q̃ = M = I.
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4. Numerical Experiments

In this section, we present some numerical experiments to check the convergence of the proposed
algorithm (9). We take X0 = 0 and Y0 = M ∈ P(N). For each iteration i, we consider the residual errors

Ei(X) = ‖Xi − (Q + (V∗XiV + W∗XiW) − (U∗XiU + B∗XiB))‖,

Ei(Y) = ‖Yi − (Q + (V∗YiV + W∗YiW) − (U∗YiU + B∗YiB))‖

and
Ei = max{Ei(X),Ei(Y)}.

All programs are written in MATLAB version 7.1.

First example. We consider (1) with

Q =

 2 0.02 0.05
0.02 2 0.02
0.05 0.02 2

 , A =

 −0.95 0.001 0.001
0.001 −0.95 0.001
0.001 0.001 −0.95


and

B =

 0.54 −0.002 −0.002
−0.002 0.54 −0.002
−0.002 −0.002 0.54

 .
In this case, we have A,B ∈ H(3),

Sp
(
Q − 2(UQU + BQB)

)
=

{
0.3345, 0.3379, 0.3880

}
and

Sp
(
Q − 2(VQV + WQW)

)
=

{
0.4532, 0.4573, 0.4612

}
,

which imply that conditions (a)-(c) of Corollary 3.4 are satisfied.
Let us consider the iterative method (9) with X0 = 0 and Y0 = 2Q. After 100 iterations, one gets the

following approximation to the positive definite solution X̂:

X̂ ≈ X100 = Y100 =

 1.9495 0.0288 0.0142
0.0288 1.9496 0.0288
0.0142 0.0288 1.9495

 .
We obtained E100 = 1.9215 × 10−13.

Second example. We consider (1) with

Q =


0.4 0.01 0.02 0.03 0.04
0.01 0.4 0.01 0.02 0.03
0.02 0.01 0.4 0.01 0.02
0.03 0.02 0.01 0.4 0.01
0.04 0.03 0.02 0.01 0.4

 , A =


−0.95 0.001 0.001 0.001 0.001
0.001 −0.95 0.001 0.001 0.001
0.001 0.001 −0.95 0.001 0.001
0.001 0.001 0.001 −0.95 0.001
0.001 0.001 0.001 0.001 −0.95


and

B =


0.44 −0.02 −0.02 −0.02 −0.02
−0.02 0.44 −0.02 −0.02 −0.02
−0.02 −0.02 0.44 −0.02 −0.02
−0.02 −0.02 −0.02 0.44 −0.02
−0.02 −0.02 −0.02 −0.02 0.44

 .
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In this case, we have A,B ∈ H(5),

Sp
(
I − 2(U2 + B2)

)
=

{
0.4078, 0.4078, 0.4078, 0.4078, 0.64716

}
,

Sp
(
I − 2(V2 + W2)

)
=

{
0.0094, 0.1577, 0.1577, 0.1577, 0.1577

}
,

Sp
(
Q − (U2 + B2)

)
=

{
0.0516, 0.0882, 0.0963, 0.0984, 0.3049

}
,

Sp
(
I − (V2 + W2) −Q

)
=

{
0.0231, 0.1844, 0.1865, 0.1949, 0.2312

}
,

which imply that conditions (a)-(c) of Corollary 3.5 are satisfied.
Considering the iterative method (9) with X0 = 0 and Y0 = I, after 82 iterations one gets an approximation

to the positive definite solution X̂ given by

X̂ ≈ X82 = Y82 =


0.4895 0.0429 0.0541 0.0658 0.0781
0.0429 0.4878 0.0418 0.0535 0.0658
0.0541 0.0418 0.4873 0.0418 0.0541
0.0658 0.0535 0.0418 0.4878 0.0429
0.0781 0.0658 0.0541 0.0429 0.4895

 .
We obtained E82 = 7.0549 × 10−16.
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