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Recursive and Combinational Formulas for Permanents of General
k-tridiagonal Toeplitz Matrices
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Abstract. This study presents recursive relations on the permanents of k − tridia1onal Toeplitz matrices
which are obtained by the reduction of the matrices to the other matrices whose permanents are easily
calculated. These recursive relations are achieved by writing the permanents with bandwidth k in terms of
the permanents with a bandwith smaller than k. Based on these recursive relations, an algorithm is given to
calculate the permanents of k− tridia1onal Toeplitz matrices. Furthermore, explicit combinational formulas,
which are obtained using these recurrences, for the permanents are also presented.

1. Introduction

The permanent, which is a function of a matrix, is given by a definition resembling to that of the
determinant. The permanent was also called as alternate determinant by Hammond in [1].

If T is an n × n square matrix then the permanent of T is defined by

Per(T) =
∑
σεSn

n∏
i=1

ai,σi (1)

where Sn be the symmetric group which consists of all permutations of {1, 2, 3, . . . ,n}, and σ be the element
of this group where σ = (σ1, σ2, ..., σn) [2].

The difference of the permanent definition from the determinant definition is that the factor, which
determines the sign of permutations, is not present in the permanent. [2-3] are recommended for those who
wish to review the essential properties of the permanent. Applications of the permanent are mostly found
in linear algebra, combinatorics and probability theory. We recommend references [4-9] for the applications
of the permanents in the area of mathematics. These applications are also encountered except the area of
mathematics. For example, in quantum physics, it is shown that all expectation values of polar domain
operators can be written with the permanent of a special matrix [10].

Consider the sequence of the permanents of matrices
{
T(k)

n (a, b, c)
}∞

n=1
defined by

P(k)
n = Per

(
T(k)

n (a, b, c)
)

= Per
(
[ti j]n×n

)
(2)
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(Halit İnce)
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where

ti j =


a, i = j
b, i = j − k
c, i = j + k
0, otherwise

(3)

for n ≥ k and a, b, c ∈ C. Accordingly, T(k)
n matrices have the form as

T(k)
n =



a 0 ... 0 b 0
0 a 0 ... 0 b
... 0 a

. . .
. . .

. . .

0
...

. . .
. . .

. . .
. . .

. . .

c 0
. . . a

. . . 0 b

c
. . .

. . .
. . .

. . . 0
. . .

. . .
. . . a 0

...
. . .

. . . 0 a 0
0 c 0 ... 0 a


n×n

. (4)

This T(k)
n (a, b, c) matrices are introduced as a family of tridiagonal matrices in [11]. According to [12],

these matrices can be evaluated as banded matrices whose bandwidth is k. However, for matrices given
by (3), it is more qualitative to use the k − tridia1onal nomenclature, as in e.g. [26]. Thanks to this
nomenclature, positions of the non-zero bands of this matrices can be determined definitely. On the other
hand, the T(k)

n (a, b, c) matrices are also in Toeplitz structure. Toeplitz matrix, which is an important member
of structured matrices [16], is in a form that each diagonal, which is parallel to the main diagonal, has the
same element in its own band. Therefore, in this paper, we call the T(k)

n (a, b, c) matrices as k − tridia1onal
Toeplitz as in [17]. Throughout the paper, 1 − tridia1onal Toeplitz matrices, which are the matrices of type
T(k)

n (a, b, c) when k = 1, are called as tridia1onal Toeplitz. Note that the k − tridia1onal Toeplitz matrix and the
tridia1onal k − Toeplitz matrix (see e.g. [18]) are different matrices.

In [19], a recursive formula has been given for the permanent of general tridia1onal Toeplitz matrix. In
addition, recursive relations have been obtained for the permanents of general tridia1onal Toeplitz matrix
by expressing it in terms of the permutation matrices. In [20], the recursive relations for the permanent of
a tridia1onal matrix which has bands consisting of 1, 1, and {ai} that is a finite sequence of real or complex
numbers have been given. In [21], a relationship has been achieved between the permanents of two different
general tridia1onal matrices whose elements on the main diagonal are with opposite signs to each other.
In [22], for the permanent of general 2 − tridia1onal Toeplitz matrix, two distinct recursive formulas which
are separated according to the order of the matrix have been given. In [23-25], the permanents of various
special tridia1onal matrices have been studied. The common feature of these studies is that both the elements
used in the matrices are selected from the well-known number sequences, such as Fibonacci and Lucas,
and the results obtained are also associated with number sequences. Besides, in [25], the permanents of
some tridia1onal Toeplitz matrices have been expressed by Binet’s formulas. In [26], an algorithm based
on the LU factorization for the permanents of general k − tridiaonal Toeplitz matrices are presented. In
[27], the permanents of a special type of k − tridiaonal Toeplitz matrix with complex entries have been
expressed in terms of the Chebyshev polynomials. In [28], some calculation algorithms have been given
for the permanents of general k − tridia1onal matrices. However, it has also been stated in that study
that these algorithms work just for matrices with integer elements. In [14], a significant representation
has been given for the permanent of general k − tridia1onal k − Toeplitz matrix by utilizing direct sum
operation for permanents and the permutation matrices. In [13] and [15], the permanents of a special kind
of Toeplitz matrix have been studied and some recursive formulizations or algorithms have been obtained.
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Although the following two studies are for the determinants, they include the outcomes that resemble to
the our findings. In [11], some recursive relationships for the determinants of general k− tridia1onal Toeplitz
matrices have been obtained. In [29], some recursive representations have been presented for determinants
of general pentadiagonal matrices.

In this study, we aimed to obtain recursive and explicit formulizations for the permanents of the general
k − tridia1onal Toeplitz matrices defined by (3). Our motivation in this work has three basic pillars that are
found in [11], [27], and [19]. In that regard, we have worked in a wide range on the permanents of the
matrices T(k)

n (a, b, c) whose determinants was studied in [11]. Recursive relations given for the permanents
of a special matrix in [27] have been obtained for the permanents of the T(k)

n (a, b, c) matrices which are the
generalized form of the matrices in [27]. Moreover, it has been examined whether recursive formulas for
the permanents of T(k)

n (a, b, c) matrices for k > 1 could be obtained in such a structure similar to the formula
given for the permanent of T(1)

n (a, b, c) in [19].

2. Preliminaries

The most important reason why there are fewer studies on the permanent function than that of the
determinant function is that every operation cannot be performed on the permanent. For example, the
permanent function is unchanging when a row is multiplied by a scalar and added to another row [2]. It
is not anticipated that the result of a permanent which has the same two rows is always zero [7]. Also, the
basic multiplicative rule of determinants given by det(AB) = det(A)det(B) does not hold for the permanent
[2].

All these results greatly restrict the methods that can be used to calculate the permanent. For this
reason, as in the calculation of the determinant, it is a common method to reduce the matrix to another
matrix whose permanent can be computed easily. One of the tools that can be used to reducing matrix is
the Laplace expansion. This method, also known as cofactor expansion, can also be utilized in permanent
calculation [7]. Laplace expansion method has been used in this study intensively because it allows us to
select the elements of the matrices also from complex numbers. Some methods, for example the Contraction
[6], cannot be used for the permanent of matrices whose elements are complex numbers.

Now, let’s present a Lemma which is the motivation of our study, before we proceed to the main results.
Minc, in [19], has proved the following lemma:

Lemma 2.1. Let the permanent of tridia1onal Toeplitz matrix be

P(1)
n = Per




a b
c a b

. . .
. . .

. . .
c a b

c a


n×n


. (5)

Then for n ≥ 2

P(1)
n = aP(1)

n−1 + bcP(1)
n−2 (6)

with initial conditions are P(1)
0 = 1, and P(1)

1 = a.

Let us move from here to see whether recursive relations like (6), which is a difference equation, can
also be produced for P(k)

n in case of k > 1.
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3. Main Results

3.1. Recursive Formulizations
Theorem 3.1. Let the permanent of 2 − tridia1onal Toeplitz matrix be

P(2)
n = Per





a 0 b 0
0 a 0 b
c 0 a 0 b

. . .
. . .

. . .
. . .

. . .
c 0 a 0 b

c 0 a 0
0 c 0 a


n×n


. (7)

Then for n ≥ 3

P(2)
n = aP(2)

n−1 + abcP(2)
n−3 + b2c2P(2)

n−4. (8)

with initial conditions are P(2)
−1 = 0, P(2)

0 = 1, P(2)
1 = a, and P(2)

2 = a2. This formula provides for a, b, c ∈ C.

Proof. Using the Laplace expansion for the P(2)
n with respect to its 1st column, we obtain

P(2)
n = aP(2)

n−1 + cPer





0 b 0 0
a 0 b 0
c 0 a 0 b

. . .
. . .

. . .
. . .

. . .
c 0 a 0 b

c 0 a 0
c 0 a


n−1×n−1


. (9)

Now, we expand the permanent appearing in the second term of the right hand side of equality (9) with
respect to its 1st row. So, we obtain

P(2)
n = aP(2)

n−1 + bcPer





a b 0 0
c a 0 b
0 0 a 0 b

c 0 a 0 b
. . .

. . .
. . .

. . .
. . .

c 0 a 0 b
c 0 a 0

0 c 0 a


n−2×n−2


. (10)

We again expand the permanent appearing in the second term of the right hand side of equality (10) with
respect to its 1st row. So, we obtain

P(2)
n = aP(2)

n−1 + abcP(2)
n−3 + b2cPer





c 0 b 0
0 a 0 b
0 0 a 0 b

c 0 a 0 b
. . .

. . .
. . .

. . .
. . .

c 0 a 0 b
c 0 a 0

c 0 a


n−3×n−3


. (11)
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Finally, we expand the permanent appearing in the third term of the right hand side of equality (11) with
respect to its 1st column. So, we obtain

P(2)
n = aP(2)

n−1 + abcP(2)
n−3 + b2c2Per





a 0 b 0
0 a 0 b
c 0 a 0 b

. . .
. . .

. . .
. . .

c 0 a 0
c 0 a


n−4×n−4


(12)

which is written as

P(2)
n = aP(2)

n−1 + abcP(2)
n−3 + b2c2P(2)

n−4. (13)

So the proof is completed.

Theorem 3.2. Let the permanent of 3 − tridia1onal Toeplitz matrix be

P(3)
n = Per





a 0 0 b 0
0 a 0 0 b
0 0 a 0 0 b
c 0 0 a 0 0 b

. . .
. . .

. . .
. . .

. . .
. . .

. . .
c 0 0 a 0 0 b

c 0 0 a 0 0
c 0 0 a 0

0 c 0 0 a


n×n


. (14)

Then for n ≥ 4

P(3)
n = aP(3)

n−1 + bcP(1)

d
n
3 e−2

P(2)
n−d n

3 e
(15)

where P(3)
s = as for 0 ≤ s ≤ 3. This formula provides for a, b, c ∈ C.

Proof. We will prove this theorem using Laplace expansion. While doing this, we will not write the matrices
obtained after each expansion step clearly as in the proof of the Theorem 3.1. Instead, we will give the steps
applied as a procedure.
First step:
The procedure starts by expanding the permanent of P(3)

n along the its 1st row. Then, we obtain

P(3)
n = aP(3)

n−1 + bP
(
T∗n−1

)
. (16)

Here, the P
(
T∗n−1

)
notation represents the permanent of the submatrix with (n − 1) × (n − 1) order that

emerges after the first step but doesn’t fit the form (3).
Second step:
P
(
T∗n−1

)
is expanded along the its 1st column. Then, we obtain

P(3)
n = aP(3)

n−1 + bcP
(
TNn−2

)
. (17)

Here, P
(
TNn−2

)
notation represents the permanent of the sub–matrix with (n− 2)× (n− 2) order that emerges
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after the second step but doesn’t fit the form (3).
Remainin1 steps:
The following steps of the procedure will be continued by expanding P

(
TNn−2

)
and all submatrices which

will be derived from P
(
TNn−2

)
along the (3 + 2i)th rows where i = 1, 2, 3, ..., d n

3 e− 2. Accordingly, first, P
(
TNn−2

)
is expanded by the its 5th row. In the next step, permanents of (n − 3) × (n − 3) ordered matrices emerged
after the previous step are expanded by their 7th rows. Then, permanents of (n−4)× (n−4) ordered matrices
emerged after the previous step are expanded by their 9th row and so forth. The overall expansion process
is repeated d n

3 e times in total until the procedure ends. One can obviously see that all the permanents
of (n − d n

3 e) × (n − d n
3 e) ordered matrices emerged after the last expansion step of the procedure are in

2 − tridia1onal Toeplitz form. The coefficients of these permanents shown as P(2)
n−d n

3 e
constitute a polynomial

with variables a, b, and c. This polynomial corresponds to P(1)

d
n
3 e−2

. The aforesaid coefficients can be seen in

an illustrative example given below. Thus, the equation (17) becomes

P(3)
n = aP(3)

n−1 + bcP(1)

d
n
3 e−2

P(2)
n−d n

3 e
. (18)

Recursive relation given for P(3)
n will be generalized to P(k)

n by the following theorem.

Theorem 3.3. The permanent of general k − tridia1onal Toeplitz matrix satisfies the following recursive equation:

P(k)
n = aP(k)

n−1 + bcP(1)

d
n
k e−2

P(k−1)
n−d n

k e
(19)

where n ≥ k + 1 and P(k)
s = as for 0 ≤ s ≤ k. This formula provides for a, b, c ∈ C.

Proof. This theorem is proved in analogy to the proof of Theorem 3.2. The f irst step and the second step in
the procedure given in the proof of Theorem 3.2 are applied to P(k)

n in the same way. The subsequent steps
which are conjoined under heading of the Remainin1 steps in that procedure will be applied as by expanding
the (k + i (k − 1)) th rows where i = 1, 2, 3, ...,

⌈
n
k

⌉
− 2. The procedure will end for P(k)

n when the number of

total steps are
⌈

n
k

⌉
.

Now we give the following recursive algorithm based on Theorem 3.1, 3.2, and 3.3.
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Algorithm 1 A recursive algorithm to calculate the permanent P(k)
n

INPUT: Order of the matrix n, bandwidth of the matrix k.
OUTPUT: Permanent of the matrix T(k)

n .
procedure perm(k,n)

if n = −1 then
return 0

else if k ≥ n then
return an

else if k = 1 then
return aperm(1,n − 1) + bcperm(1,n − 2)

else if k = 2 then
if n ≥ 3 then

return aperm(2,n − 1) + abcperm(2,n − 3) + b2c2perm(2,n − 4)
end if

else if k ≥ 3 then
return
aperm(k,n − 1) + bcperm(1,

⌈
n
k

⌉
− 2)perm(k − 1,n −

⌈
n
k

⌉
)

end if
end procedure

3.2. An Illustrative Example

The procedure for the permanent of the matrix that forms in the case of k = 3 and n = 19 is as follows:
Step1:

P(3)
19 is expanded along the its 1st row. Then, we obtain

P(3)
19 = aP(3)

18 + bP
(
T∗18

)
. (20)

Here, the P
(
T∗18

)
notation represents the permanent of order 18 by 18 that emerges after the first step but

doesn’t fit to the form shown in (3).
Step2 :

P
(
T∗18

)
is expanded along the its 1st column. Then, we obtain

P(3)
19 = aP(3)

18 + bcP
(
TN17

)
. (21)

Here, the P
(
TNn−2

)
notation represents the permanent of order 17 by 17 that emerges after the second step

but doesn’t fit to the form shown in (3).
The procedure will be continued by expanding P

(
TN17

)
and all matrices which will be derived from

P
(
TN17

)
along the (3+2i)th rows where i = 1, 2, 3, ..., d 19

3 e−2. Accordingly, expansion will be performed along
the 5th, 7th, 9th, 11th and 13th rows. Emergent permanents after every new step will not be shown clearly;
instead, their coefficients on behalf of the permanents will be written. The zeros inside the coefficients
represent the terms where the values of the permanents are zero. The remaining steps are as follows.

Step3 :
P
(
TN17

)
is expanded by its 5th row. Coefficients of the generated permanents of order 16 by 16 are bca and

b2c, respectively.
Step4 :

All emergent permanents after the previous step are expanded by their 7th rows. So, the coefficients of
generated permanents of order 15 by 15 are bca2, b2ca, b2c2, and b3c, respectively.
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Step5 :
All emergent permanents after the previous step are expanded by their 9th rows. So, the coefficients of
generated permanents of order 14 by 14 are bca3, b2ca2, b2c2a, b3ca, b2c2a, b3c2, and b4c, respectively.

Step6 :
All emergent permanents after the previous step are expanded by their 11th rows. So, the coefficients of
generated permanents of order 13 by 13 are bca4, b2ca3, b2c2a2, b3ca2, b2c2a2, b3c2a, b4ca, b2c2a2, b3c2a, b3c3, b4c2,
and b5c, respectively.

Step7 :
All emergent permanents after the previous step are expanded by their 13th rows. So, the coefficients of
generated permanents of order 12 by 12 are bca5, b2c2a3, b2c2a3, 0, b2c2a3, b3c3a, 0, b2c2a3, b3c3a, b3c3a, 0, and
0, respectively.

The procedure ends in this step since the total number of steps is equal to
⌈

19
3

⌉
. It will be seen that all

permanents emerged after the last step have been reduced to the form of P(2)
12 . Thus, achieved equality is

P(3)
19 = aP(3)

18 + bc(a5 + 4a3bc + 3ab2c2)P(2)
12 . (22)

The coefficient of bcP(2)
12 can be arranged as

a
((

5
0

) (
a2

)2
+

(
4
1

) (
a2

)1
bc +

(
3
2

)
(bc)2

)
. (23)

This statement is equal to P(1)
5 according to the Theorem 3.4. So,

P(3)
19 = aP(3)

18 + bcP(1)
5 P(2)

12 (24)

is obtained.

3.3. Explicit Formulizations for k = 1 and k = 2
Theorem 3.4. The permanent of the general tridia1onal matrix can be formulized as

P(1)
n = a

1−(−1)n
2

b
n
2 c∑

r=0

(
n − r

r

) (
a2

)b n
2 c−r

(bc)r . (25)

Proof. It can be proved by induction on n.
Equality (25) for n = 2

P(1)
2 = a

1−(−1)2

2

1∑
r=0

(
2 − r

r

) (
a2

)1−r
(bc)r =

(
2
0

) (
a2

)1
+

(
1
1

)
bc = a2 + bc. (26)

On the other hand,

P(1)
2 = Per

([
a b
c a

]
2×2

)
= a2 + bc. (27)

Therefore, if n = 2, equality (25) holds. Suppose that equality (25) holds for n. It should also be shown that
equality (25) holds for (n + 1), that is

P(1)
n+1 = a

1−(−1)n+1

2

b
n+1

2 c∑
r=0

(
n + 1 − r

r

) (
a2

)b n+1
2 c−r

(bc)r . (28)
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First, let’s write P(1)
n+1 by using equality (6). Then, we obtain

P(1)
n+1 = a.P(1)

n + bcP(1)
n−1. (29)

If the right hand side of equality (29) is rewritten by using equality (25) which is supposed, then

P(1)
n+1 = a1+ 1−(−1)n

2

b
n
2 c∑

r=0

(
n − r

r

) (
a2

)b n
2 c−r

(bc)r + bca
1−(−1)n−1

2

b
n−1

2 c∑
r=0

(
n − 1 − r

r

) (
a2

)b n−1
2 c−r

(bc)r . (30)

is obtained. Upper bounds of the summations in equality (30) should be considered with respect to the case
of n which are odd or even. But, we will continue the rest of the proof for only one case of n.
Let n be odd. Then,

⌊
n
2

⌋
=

⌊
n−1

2

⌋
= n−1

2 . Accordingly, equality (30) turns into

P(1)
n+1 = a2

n−1
2∑

r=0

(
n − r

r

)
an−1−2r (bc)r + bc

n−1
2∑

r=0

(
n − 1 − r

r

)
an−1−2r (bc)r . (31)

If equality (31) is written explicitly, we obtain

P(1)
n+1 =

(
n
0

)
an+1+

((
n − 1

1

)
+

(
n − 1

0

))
an−1bc+

((
n − 2

2

)
+

(
n − 2

1

))
an−3 (bc)2+...+

( n+1
2

n−1
2

)
+

( n+1
2

n−3
2

) a2 (bc)
n−1

2 +(bc)
n+1

2 .

(32)

If equality (32) is re-arranged using the following property of the combination(
n
r

)
+

(
n

r − 1

)
=

(
n + 1

r

)
then

P(1)
n+1 =

(
a2

) n+1
2

+

(
n
1

) (
a2

) n−1
2 bc +

(
n − 1

2

) (
a2

) n−3
2 (bc)2 + ... +

( n+3
2

n−1
2

)
a2 (bc)

n−1
2 + (bc)

n+1
2 (33)

is obtained. Finally, equality (33) can be written in the following form

P(1)
n+1 = a

1−(−1)n+1

2

b
n+1

2 c∑
r=0

(
n + 1 − r

r

) (
a2

)b n+1
2 c−r

(bc)r . (34)

Hence, the proof is completed for n is odd. It is easy to perform the proof similarly for n is even.

Theorem 3.5. The permanent of general 2 − tridia1onal matrix can be formulized as

P(2)
n = an + bc

n−3∑
i=0

an−3−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

(35)

where P(1)
0 = 1, P(1)

1 = a, and P(1)
2 = a2.

Proof. It can be proved by induction on n.
Equality (35) for n = 3

P(2)
3 = a3 + bc

0∑
i=0

a−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

= a3 + bcP(1)
0 P(1)

1 = a3 + bca. (36)
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On the other hand,

P(2)
3 = Per


 a 0 b

0 a 0
c 0 a


3×3

 = a3 + bca. (37)

Therefore, equality (35) holds for n = 3. Suppose that equality (35) holds for n = r. That is,

P(2)
r = ar + bc

r−3∑
i=0

ar−3−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

. (38)

It should also be shown that equality (35) holds for n = r + 1, i.e.

P(2)
r+1 = ar+1 + bc

r−2∑
i=0

ar−2−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

. (39)

First, let k = 2 and n = r + 1 in equality (19). Then, we have

P(2)
r+1 = aP(2)

r + bcP(1)

d
r+1

2 e−2
P(1)

r+1−d r+1
2 e
. (40)

Let’s put equality (38) in to equality (40):

P(2)
r+1 = a

ar + bc
r−3∑
i=0

ar−3−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

 + bcP(1)

d
r+1

2 e−2
P(1)

r+1−d r+1
2 e
. (41)

Since
⌈

r+1
2

⌉
− 2 =

⌊
r−2

2

⌋
and r + 1−

⌈
r+1

2

⌉
=

⌊
r−1

2

⌋
+ 1 for every integer r, it can be written P(1)

b
r−2

2 c
P(1)

b
r−1

2 c+1
instead

of P(1)

d
r+1

2 e−2
P(1)

r+1−d r+1
2 e

which is the second term of the right hand side of (41). Accordingly, if equality (41) is

rewritten explicitly then we have

P(2)
r+1 = ar+1 + bc

(
ar−2P(1)

0 P(1)
1 + ... + aP(1)

b
r−3

2 c
P(1)

b
r−2

2 c+1
+ P(1)

b
r−2

2 c
P(1)

b
r−1

2 c+1

)
. (42)

Hence, equality (42) can be written as

P(2)
r+1 = ar+1 + bc

r−2∑
i=0

ar−2−iP(1)

b
i
2 c

P(1)

b
i+1
2 c+1

(43)

which is desired.

In fact, the formula given with the Theorem 3.5 also is an explicit formula for the permanent of 2 −
tridia1onal Toeplitz matrix. Because, P(1)

b
i
2 c

and P(1)

b
i+1
2 c+1

multipliers in that formula have been expressed

combinatorially through the Theorem 3.4.

4. Conclusions

Recursive relations which are given in this study make it possible to calculate the permanents of general
k − tridia1onal Toeplitz matrices with the help of permanents of (k − i) − tridia1onal Toeplitz matrices where
i = 1, 2, ..., k − 1. By using these recursive relations, explicit formulas have been obtained for P(1)

n and P(2)
n .

In addition, an algorithm built through the Laplace expansion has been proposed for the permanents of
general k − tridia1onal Toeplitz matrices. It can be investigated whether this algorithm can be developed for
more general matrices than the once we used.

This work can be evaluated as a distinct application in the matter of reducing matrices because the
recursive relations in this study are achieved by expressing the permanents of the matrices with bandwidth
k in terms of the permanents with a bandwidth smaller than k.



A Z Küçük et al. / Filomat 33:1 (2019), 307–317 317

References

[1] J. Hammond, Question 6001, Educ. Times, 32 (1879) 179.
[2] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, (1st edition), Cambridge University Press, New York, 1991.
[3] M. Marcus, H. Minc, Permanents, The American Mathematical Monthly, 72 (1965) 577–591.
[4] R. D. McMillan, The Permanent Function, Oklahoma State University Library, PhD Thesis No: 724964, (1969).
[5] D. C. Kozen, The Design and Analysis of Algorithms (pp.144–150), Springer, New York, 1992.
[6] R. A. Brualdi, P. M. Gibson, Convex polyhedra of doubly stochastic matrices I: Applications of the permanent function, The

Journal of Combinatorial Theory (A) 22 (1977) 194–230.
[7] H. Minc, Permanents, in: Encyclopedia of Mathematics and its Applications vol.6, Cambridge University Press, 1978.
[8] R. B. Bapat, Multinomial probabilities, permanents and a conjecture of Karlin and Rinott, Proceedings of the American Mathe-

matical Society, 102 (1988). 467–472.
[9] B. Codonetti, G. Resta, Computation of sparse circulant permanents via determinants, Linear Algebra and its Applications, 355

(2002) 15–34.
[10] S. Scheel, Permanents in Linear Optical Networks, arXiv preprint quant-ph/0406127, (2004).
[11] G. E. Bergun, V. E. Hoggatt, A family of tridiagonal matrices, Fibonacci Quart., 16 (1978) 285–288.
[12] W. F. Trench, Banded symmetric Toeplitz matrices: where linear algebra borrows from difference equations, Available at:

http://ramanujan.math.trinity.edu/wtrench/research/papers/TRENCH TN 12.PDF
[13] H. Minc, Recurrence formulas for permanents of (0,1)-circulants,. Linear Algebra and Its Applications, 71 (1985) 241–265.
[14] E. Kırklar, F. Yılmaz, A note on k-tridiagonal k-Toeplitz matrices, Alabama Journal of Mathematics 39 (2015).
[15] B. Codenotti, V. Crespi, G. Resta, On the permanent of certain (0, 1) Toeplitz matrices, Linear Algebra and its Applications, 267

(1997) 65–100.
[16] D. A. Bini, Matrix structures and applications, Les Cours du CIRM, 4.1 (2014) 1–45.
[17] J. Jia, T. Sogabe, M. El-Mikkawy, Inversion of k-tridiagonal Matrices with Toeplitz Structure, Computers and Mathematics with

Applications, 65, (2013) 116–125.
[18] C. M. Fonseca, J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix, Numerische Mathematik, 100 (2005) 457–482.
[19] H. Minc, On permanents of circulants, Pacific Journal of Mathematics, 42 (1972).
[20] D. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices, Fibonacci Quart., 13 (1975) 150–158.
[21] E. Kilic, D. Tasci, On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers, Rocky

Mountain J. Math., 37 (2007) 1953–1969.
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