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Abstract. Since SPARQL has been the standard language for querying RDF data, keyword search based
on keywords-to-SPARQL translation attracts more intention. However, existing keyword search based on
keywords-to-SPARQL translation have limitations that the schema used for keyword-to-SPARQL transla-
tion is incomplete so that wrong or incomplete answers are returned and advantages of indexes are not
fully taken. To address the issues, an inter-entity relationship summary (ER-summary) is constructed by
distilling all the inter-entity relationships of RDF data graph. On ER-summary, we draw circles around
each vertex with a given radius r and in the circles we build the shortest property path index (SP-index),
the shortest distance index (SD-index) and the r-neighborhoods index by using dynamic programming al-
gorithm. Rather than searching for top-k subgraphs connecting all the keywords centered directly as most
existing methods do, we use these indexes to translate keyword queries into SPARQL queries to realize
exchanging space for time. Extensive experiments show that our approach is efficient and effective.

1. Introduction

We are inundated with a significant amount of rapidly growing RDF data from disparate domains
since the RDF (Resource Description Framework) [10] has been proposed for modeling Web objects. It has
been widely used in various applications (e.g., DBPedia, Yago, Wordnet). RDF data can be represented as
a collection of triples denoted as SPO (subject, property, object). SPARQL [1, 17] is the official standard
for searching over RDF repositories. Although the SPARQL query has a similar format to the SQL query
for relational engines, it is a graph pattern-matching query language and supports conjunctions of triple
patterns.

If the database schema is unknown, it is a challenging task even for users who are familiar with the
SPARQL query, not to mention non-expert users. First, the non-expert user must master the SPARQL
query syntax. Second, the vocabulary of the underlying RDF data is required. Keyword search is a very
succinct way by which non-expert users needn’t to grasp professional knowledge about the schema or
query languages. So, we present an approach of translating keyword queries into SPARQL queries. We
provide non-expert users with a friendly interface as well as a good query performance.

Keyword search on RDF data can be summarized into two categories by query processing ways.
One returns query results by directly finding candidate answers containing keywords on the RDF graph,
discussed in [2, 4, 7-9, 12, 14] and the other constructs queries by the schema extracted from the RDF data
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and then obtains query results by performing produced queries, discussed in [6, 11, 19, 20]. For the latter,
three processes, keywords mapping, constructing queries and ranking queries are usually included. In [20],
to clearly express the user intention, the queries are selected by the user interaction which requires some
field knowledge. More work related to keyword search is discussed in [13-15, 18].

Due to several following advantages [19], keyword search based on translation is attracting more and
more intention. First, the exploring on the summary that is much smaller than the real dataset accelerates
the subgraph searching. Second, the user can select the best one by the user intention from the produced
queries. In addition, we can exploit the optimization capabilities of existing search engines to improve
query performance. It has been proved that keyword search based on translation is faster than direct
keyword query answering in [19], called the SCHEMA method.

To our knowledge, few works on keyword search based on keywords-to-SPARQL translation are done
so far (e.g., [6, 11, 19, 20]. In [11], structure indexes are extracted from RDF graph to help construct
conjunctive queries but it costs much overhead on the structure indexes and takes more query time, and
the authors of [6] define a type-based summary by following SCHEMA. The summary in SCHEMA looses
too much information in RDF data as to how one type of the entity is connected to other types of the
entity. For SCHEMA, all vertices of the same type are indistinguishably mapped to the same type vertex,
only one property between the type vertices is kept. SCHEMA performs well on the datasets with regular
topological structure (e.g., DBLP), but it returns wrong or incomplete answers for LUBM. The problem in
SCHEMA is also detailed in [12] so they propose a new summary index based on types by partitioning and
summarizing which leads to more overhead.

Inspired by these observations, we present a new approach to translate keyword queries to SPARQL
queries using multiple indexes built in advance to exchange space for time. By the indexes we can quickly
find top-k subgraphs and then translate them into SPARQL queries which are eventually executed by a
SPARQL search engine. To summarize, we make the following contributions.

(1) We distill an ER-summary that summarizes relationships of all the inter-entities corresponding to
relationships between query variables. The entity vertices and literal vertices are encoded to integer IDs
for computation.

(2) We develop algorithms to find top-k subgraphs connecting all the keyword elements and trans-
late the top-k subgraphs into SPARQL queries by multiple indexes (e.g., SD-index, SP-index and the
r-neighborhoods index).

(3) We confirm the performance of our approach is superior to existing methods by a detailed series of
experiments on real and benchmark RDF repositories.

In what follows, Section 2 provides an overview of our approach. Details on indexing graph data
and keyword search with multiple indexes in Section 3 and Section 4 respectively. Section 5 presents
experimental evaluation. Finally, the conclusion is arrived in Section 6.

2. Overview of our approach

We start with an overview of the following different steps. The architecture workflow is shown in Figure
2. Our work consists of pre-computing indexes and the top-k query translation denoted by two dashed
boxes of Figure 2 respectively. I use Figure 1 to illustrate our approach.

Preprocessing. We process the RDF data to obtain the keywords-to-entities index used for the mapping
of keywords to entities. An ER-summary is constructed that summarizes all the inter-entity relationships
of the RDF data and over which SD-index, SP-index and the r-neighborhoods index are built.

Top-k Query Translation. Keywords are mapped to entities on ER-summary. Compute all the possible
combinations of the entities w={w;, w», ..., w,}. Using r-neighborhoods index and SD-index, Start from
each of these matched keyword entities, top-k subgraphs connecting all keyword elements can be quickly
found by the combined distance sumDist=X;e[1 »d(1t, w;) where u is the connecting node, w; is matched
entities and d(u, w;) is the shortest distance from u to w; derived from SD-index. For each subgraph, a
SPARQL query is produced by the mapping of subgraph entities to query variables and subgraph property
paths to relationships between query variables. Finally, translate top-k subgraphs into top-k SPARQL
queries, execute the queries by a SPARQL search engine and return the query results to the user.
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Figure 1: RDF data graph
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Figure 2: Architecture of our approach

3. Indexing graph data

We address the off-line indexing process where graph data is preprocessed and kept in specific data
structures of a keyword and a graph index (ER-summary). We build multiple indexes over the graph index
for the translation of keywords-to-SPARQL queries.

3.1. The keyword index

We employ B*Tree due to less storage space for indexes than the size of original data by the compressed
B*Tree (see, e.g., [16]). A B*Tree structure is built to support quickly mapping keywords to the entities with
corresponding properties used for the translation. Figure 3 is our B* Tree structure for the keyword index.
The triples with object, predicate and subject shown in Table 1 are kept in leaf nodes of the B*Tree. Oj4 (e.g.,
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1, 2,...,7 in Figure 3) is the keyword integer ID converted by a string hash function and p;; (e.g., p11,. .,
pe1) represents the property for s;; (e.g.,511,- - - ,563). Subjects and predicates of RDF triples are all converted
into integer IDs by a mapping dictionary [3]. Because RDF triples can be converted into ID triples so as to
compress the triple store, we compress the ID triples by [16]. Not only the subjects but also the predicates
are required for the later translation of top-k subgraphs to SPARQL queries so we converted RDF triples
into ID triples rather than simple IDs.

Unlike the method by [16], all six possible permutations of subject, predicate and object are constructed
in clustered B*Tree indexes, our keywords-to-entities index only maintains a (object, predicate, subject)
permutation. Each lookup finding all triples containing keyword integer IDs must be a path from the root
node to leaf node and all lookups have same path length, which leads to equivalent query performance.
The time complexity of lookup is O (h) where h is the height of the B*tree.

Object Predicate Subject

43549996 ubmmame 5951 (http://www.Department5.University0.edu/FullProfessor9)
43549996 ubmname 1740 (http://www.Departmentl.University0.edu/FullProfessor9)
43549996 ub:name 523 (http://www.Department0.University0.edu/FullProfessor9)
43549996 ubmname 7046 (http://www.Department6.University0.edu/FullProfessor9)

Table 1: Data sample for leaf nodes of B*-Tree
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1p13s13 2p23s23 3p33s33 4 p43s43 5p53s53 6 p63 563 7 p73s73

Figure 3: A B*-tree structure for the keywords-to-entities index

3.2. The inter-entity relationship summary (ER-summary)

We build ER-summary including all the relationships between inter-entities of RDF data. First, we
introduce the motivation for building the summary by an example. For a keyword query to find the
department that FullProfessor0 works for whose corresponding SPARQL query is " select ?x ?y where {?x
ub:worksFor ?y. ?x rdf:type FullProfessor.?y rdf:type Department. ?x ub:name "FullProfessor0’}"’, we need
to know the relationships between query variables ?x” and "?y” in order to translate the keyword query
to the SPARQL query. Therefore ER-summary is distilled from RDF data so as to obtain the relationships
between entities corresponding to the relationships between query variables. We define ER-summary as
follows.

Definition 1. : An inter-entity relationship summary G’ of a data graph G=(V,L,E) is a tuple (V',L’ ,E’) with vertices
V'=Vg, inter-entity edge labels L’=Lg, and E’ C E. E’ connects two entity vertices . V represents the set of entity
vertices(i.e.,IRIs). The edge e(vq, v2) exists in the index if and only if there is an edge e(v1,v,) € E and vy, v, € V.

When calculating indexes, ER-summary is transformed into an undirected graph where all the vertices
are represented by the integer IDs and the edge weight is all set to 1, as shown in Figure 4. All RDF data
are from Figure 1. The edge together with edge direction is kept in a table used for late translation.
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Figure 4: Integer inter-entity relation summary

3.3. Build multiple indexes by performing dynamic programming algorithm (DP)

We describe the process of building indexes on ER-summary including the r-neighborhoods index, SD-
index and SP-index by DP algorithm. Similar to the r-cliques in [9], we define r-neighborhoods as shown
in Definition 2. Each vertex on ER-summary is treated as the center and around which circles with radius r
are drawn, by which the summary graph is partitioned into multiple blocks that are similar to our r radius
neighborhoods. It takes less time to search on blocks than on the whole summary graph. In Figure 5, note
that there are intersections between circles so that we needn’t to build between-block indexes as [7] does.
Those answers where keyword elements are not very close to each other are less useful and informative
[9]. We suppose the answer connecting all keyword elements must be found in some circle as long as the
radius r is reasonably given.

Figure 5: r=2 radius area

Definition 2. (r-neighborhood): Given a graph G, a r-neighborhood of G is a set of nodes in which the shortest
distance between any two nodes is no larger than r. The shortest distance between two nodes is the sum of the weights
of the edges in G on the shortest path between the two nodes.

We precompute the shortest distances from any two nodes as SD-index used for search for top-k
subgraphs by calculating the combined distance. Through SP-index we can produce property paths of any
two vertices, e.g., the property path of "2 — 1 — 0" is ""ub : publicationAuthor/ub : worksFor”” where "’ /" is
the property path operator of SPARQL 1.1.

We build the r-neighborhoods index on ER-summary which can greatly improve search performance
on the fly. r controls the size of the neighborhood. The pseudo codes are shown in Algorithm 1.

Data structure. The AdjacentList is an adjacent list for ER-summary graph shown in Figure 4. We
introduce Q to achieve recursive calculations. Each node < nodeld,d,p > contains three attributes, node
integer ID nodeld, the shortest distance from the starting node d, and the shortest path from the starting node
p. When visiting a new node, we can get the states of the node just visited by the three attributes. MapA
is a list of form < center, neighbors > where center is the starting node and neighbors is an ordered list by the
distance from starting nodes within radius r. MapD and MapP keep SD-index and SP-index respectively.
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The algorithm. We build the r-neighborhoods index, SD-index and SP-index on G (line 2-23). At each
’for’ iteration, d is set to be 0 which shows a node has not been reached yet (line 4). We push an entry
< nodeld, d,p > from AdjacentList into q (line 6). When g is not empty, the algorithm proceeds in the iterations
of ‘while’ (line 8-22). In each iteration, we pop the top entry of g to a node of form < tId, td, tp >. Next, we
visit the node if the node has not been visited. The node ID tId is kept in an array neighbors so as to build
the r-neighborhoods index (line 23). SD-index and SP-index are stored in MapD and MapP respectively
(line 16-17). Then add td and neighbors of the node will be expanded where tp is the path from starting that
grows with the expansion (line 19-22). We repeat the loop until Q is empty or td >R (line 10-11). The time
complexity is O(|V] * (|E| + |V])) where |E| is the number of edges, and |V| is the number of vertices.

Algorithm 1: Building indexes by dynamic programming algorithm
Input: integer inter-entity relationship summary, G={V,E}, the designated radius, r
Output: mapp: the shortest distance index, mapp: path index, map4: r-neighborhoods index
1 Variables: AdjacentList: an adjacent list for G; Q: q queue, each element form of (< nodeld, d,p >); visited:
an array indicating whether the node is visited, map: a list of form of < center, neighbors > where
neighbors is an ordered list;
for i « 0 to AdjacentList.size()-1 do

2
3 nodeld « AdjacentList.get(i);
4 d«0;
5 p « nodeld;
6 Q.enqueue(< nodeld, d,p >);
7 visited «— (;
8 while !Q.empty() do
9 < tld, td, tp > Q.deqgeue();
10 if td > R then
1 L break;
12 if visited[tld] == 0 then
13 neighbors « tld;
14 if mapp.contains(tld — nodeld) then
15 | continue;
16 mapp <« (nodeld — tld, td);
17 mapp <« (nodeld — tId, tp);
18 visited[tld] « 1;
19 td «— td +1;
20 for each node eld that is adjacent to tld do
21 object « (eld, td, tp « tp + eld);
22 L Q.enqueue(object);
23 map < (< nodeld, neighbors >);

4. Keyword search with multiple indexes

We present the process of searching for top-k subgraphs using multiple indexes, SD-index, SP-index
and the r-neighborhoods index built in Section 3.3 and the translation of keywords-to-SPARQL queries.

4.1. Searching for top-k subgraphs connecting all keyword elements

We look for top-k subgraphs using multiple indexes. We call entities containing keywords keyword
elements. The algorithm is shown in Algorithm 2.
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Data structure. W is a possible combination of keyword elements w = (w1, ws,. . .,w,). A keeps answers
found and each element in A is form < u,sumDist,w > where u is the connecting node, sumDist is the
distance sum from u to the keyword elements. A threshold Ty, is the current k-th shortest combined
distance. For a new answer to be in the top k, its combined distance is no greater than T,y

The algorithm. We use a cursor to traverse the search list for each keyword element searchList (w;) from
the r-neighborhoods index. Cursor c; advances on the list searchList (w;) by calling next (line 5), which
returns the next node in the list. As soon as we visit a node of the search list searchList (w;), we check its
combined distance sumDist from the other keyword elements by SD-index (line 11-12). Using the sumDist,
we can immediately determine if we have found the connecting node of an answer. If the sumDist is less
than the pruning threshold the top-k subgraph is kept otherwise it is abandoned (line 18-22).

Algorithm 2: Searching for top-k subgraphs using indexes

Input: mapp, mapa
Output: A: top — k subgraphs
foreachi € [1,m] do
L ¢; <« new Cursor(searchList(w;),0);
3 while Jj € [1,m] : ¢j.peekDist() # oo do
4 i < pick from [1, m] in a round-robin fashion;
5 u « c;.next();
6 for each keyword element combination w € W do
7 if u #1 then
8 L | visit (uw);

No=

isit (1, w) begin
10 sumDist, « 0;
11 foreach j € [1,m] do

©
<

12 L sumDist, < sumDist, + mapp.get(u — w;);

13 if sumDist,, < oo then

14 if |[A| < k then

15 A.add(< u,sumDist,, w >);

16 | Torune < the k—th largest of {sumDist(v)|v € A};
17 else

18 if sumDist, < Tppyp, then

19 insert it to A by the combined distance;

20 Tyrune < the k—th largest of {sumDist(v)|v € A};
21 else

22 L return;

4.2. Translating for top-k subgraphs to SPARQL queries

We translate top-k subgraphs derived by last section into SPARQL queries. We can obtain the inter-entity
relationships by searching for top-k subgraphs on ER-summary. The keywords-to-entities relationships can
be obtained from the keywords-to-entities index in Section 3.1.

4.2.1. SPARQL and the property path of SPARQL

We present the select query form as shown in Definition 3 by which it is easier to transform the subgraph
into the SPARQL query graph.
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Definition 3. (SPARQL query) A simple SPARQL query is defined as sparql— SELECT wvarlist WHERE(gp) where
varlist=(v1, vy, ...,v,) is an ordered list of variables and varlist Cvar(gp) and gp is the basic graph pattern that is a
set of triple patterns.

The ends of a property path for SPARQL 1.1 may be variables or RDF terms and a property path can’t
contain variables. To start with the definition of property path expressions, the SPARQL 1.1 specification
[17] is followed.

Definition 4. ¢ := (iri)|(“e)|(e1/e2)|(exle2)|(eN)I(e)(e)|(Miri . . . lirig (M ird] . . . |Nirik})

iriy,..., iriy are IRIs. Negated property sets are the expressions starting with ”’!””. “e denotes the reverse
path construction, e;/e; represents a sequence path of e; followed by e; and e;|e; is an alternative path of e;
or . e1les, e+, ex, e?, Wiriy|. .. |iriy} and {"iri] . .. | iric} are not considered.

4.2.2. Translating top-k subgraphs into SPARQL queries

A SPARQL query can be a query graph, therefore each one of top-k subgraphs can be mapped to be a
SPARQL query graph, such as Figure 6 (b). The subgraph form of < u, sumDist, w > derived by last section
can construct a graph by SP-index where the paths from u — wy, u — w», ..., u = w,, can be connected
together to be a graph as shown in Figure 6 (a). u is a connecting node, w is the possible keyword element
combination and p1, py, p3, pm are all property paths. The algorithm is shown in Algorithm 3.

The algorithm. In each element of A, there are three attributes, the connecting node u and keyword
element combination w are used to translate top-k subgraphs into SPARQL queries. Nevertheless, sumDist
is not used to translate subgraphs but to find top-k subgraphs mentioned in the last section. Each time we
produce the SPARQL queries by combing the triple patterns with types, keyword predicates and property
paths (line 4-10). The results are kept in Q (line 12). "select distinct * where {"” in Line 3 and "}"” in Line 11
are necessary for each produced SPARQL query. The algorithm time complexity is O (k = m) where k is the
number of produced SPARQL queries and m is the number of the keywords.

(o (o) TR i\
(w2 ) [ Ws ( ?wWa2 ( ?Ws
\< B p3> \;‘/p B r;}/
SN d ETh Y
o py. o ey
(w) (we) o )
N N (w) \JWn)
(a) subgraph (b) SPARQL query graph

Figure 6: Mapping between the subgraph a and the SPARQL query graph b

5. Experiments

We test the performance of indexing and querying on both synthetical and real datasets. LUBM,
one synthetic dataset and two real datasets SwetoDblp and WordNet are utilized where LUBM (Lehigh
University Benchmark) is a popular benchmark, SwetoDblp is a large-size ontology on bibliography data of
computer science publications from DBLP, and WordNet is a lexical database for the English language that
organizes English words into synonym sets according to part of speech and enumerates linguistic relations
between these sets. Two existing methods in [19] and [12] denoted as SCHEMA and SUMM are utilized to
do comparative tests. The SPARQL queries produced are executed by the search engine [5].

Index performance We test the performance of indexes including ER-summary, the keywords-to-entities
index, SD-index, SP-index and r-neighborhoods index, in terms of indexing time and index size. Figure 7
(a) shows the indexing time and index size of ER-summary and the keywords-to-entities index over LUBM
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Algorithm 3: Translating top-k subgraphs to SPARQL queries
Input: A: top-k subgraphs, mapp
Output: Q: top-k SPARQL queries
1 forae Ado
(u,sumDist,w)« a;
q < select distinct * where { ;
forie[1,m] do
pi < property path of u — w;;
qg<—q+t?u p; wi. ;
predicate; < the predicate of k; — w;;
q < g+k; predicate; w;.;
type; < the type of w;;
q < q+w; rdf :type type;;
q < q+h;
| Qadd(g);
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while varying the size of the data and we can notice the size of ER-summary and the keywords-to-entities
index is much less than that of the data. Figure 7 (b) shows the time of building ER-summary and the
keywords-to-entities index.
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Figure 7: Index size a and time b over LUBM

In Figure 8, we examine the impact of  to the size and the time of indexes that contain SD-index, SP-
index and r-neighborhoods index which are necessary for constructing top-k subgraphs. The size and the
time of the three indexes increase linearly when the radius r varies from 1 to 7 on LUBM. This is reasonable
that larger » produces larger size indexes and requires more time. The size remains small (0.21-39.2 M) and
the time remains low (0.295-46.16 s). DP is used to produce these three indexes at the same time so the time
for the three indexes is same shown in Figure 8 (b). We set a generous default value r=7.

By Figure 9, note that the number of distinct entities on ER-summary has great impact on the size of
SD-index, SP-index and the r-neighborhoods index. The size of the index increases as the number of distinct
entities increases. Even so, the size of indexes is still small because the number of distinct entities is much
less than the data shown in Figure 10. The number of entities is much smaller than the number of triples
whatever the dataset, which proves it is correct for us to distill ER-summary from RDF data to reduce search
space. WordNet and SwetoDblp contain more entities than LUBM.

In Figure 11, we present the size and the time of constructing ER-summary and the keywords-to-entities
index with the datasets of the size 24M. Since the different graph topology from the datasets, the size
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Figure 8: Impact of 7 to the index size a impact of r to the indexing time b for LUBM
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Figure 11: Size a and time b for inter-entity relationship summary and keywords-to-entities

and the time for LUBM is all smaller than other two datasets. LUBM has the least number of entities on
the same size dataset. So it has the least size and the least time for constructing ER-summary and the
keywords-to-entities index.

Query performance The sample queries are described in Table 2. Figure 12 illustrates our query time
over both synthetical and real datasets. The query time consists of the time of producing SPARQL queries
and the time of executing the SPARQL queries. In Figure 12, the producing time is less than the executing
time because the indexes for ER-summary are built in advance without traversing the index graph on the



X. Lin et al. / Filomat 32:5 (2018), 1861-1873 1871

Queries # Keyword Nodes Datasets
Q1  Publication19, Lecturer6 (53, 16) LUBM
Q>  Researchb, FullProfessor9, Publication17 (32,11, 196) LUBM
Qs  FullProfessor9, GraduateStudent0, Publication18, Lecturer6 (11, 37,102, 16) LUBM
Qs  Department0, GraduateStudentl, Publication18, AssociateProfessor0 (3, 37, 102, 37) LUBM
Qs  The Compiler Design Handbook, Dynamic Compilation. (23,1) SwetoDblp
Qs  2002-01-03, Traditional Software Design. (6091, 1) SwetoDblp
Q7 2002, Dynamic Compilation., (1426, 1) SwetoDblp
Qs 1990, Graph Algorithms. (585, 1) SwetoDblp
Qy  breach of contract ) WordNet
Q10 nothing, nonentity 2,2 WordNet
Q11 first base, third base, baseball team, solo homer 4,3,17,4) WordNet
Q12 amphibious landing () WordNet

Table 2: Sample query workload

fly, which realizes our goal of trading more space to use less time. Nonetheless, the index size remains
low (0.018-46.5 MB). The executing time is mainly affected by the property path length of SPARQL queries
produced and the size of the dataset. The executing time gets longer as there are longer property paths in
the SPARQL queries. Our query time is not related directly to the number of keywords. The query time is
in log scale.
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Figure 14: SUMM a and our approach b over LUBM

Figure 13: Performance comparison on LUBM

We use four same queries as that in [12] to compare query time shown in Figure 13. Although SCHEMA
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has the best query performance, its schema summary is incomplete which leads to wrong or incomplete
answers. In what follows, we discuss the query time for SUMM and our approach in guaranteeing the
correctness of the query results. Our approach outperforms SUMM except for Q; as shown in Figure 13.

We investigate the scalability of our approaches, with respect to the data size of LUBM. In Figure 14
(a) and (b), the query time for SUMM and ours is shown while varying the size of LUBM. We can see the
query time becomes longer as the size of the data increases for both SUMM and our approach. However,
the query time remains low (1.25-100 s). As the data size increases, there may be more keyword elements
matching keywords, which leads to more possible keyword element combinations on one hand and the
time of executing SPARQL queries produced increases on the other hand.

6. Conclusion

We focus on the translation of keywords queries to SPARQL queries by using multiple indexes. It
costs too much to build SD-index, SP-index for all pairs on ER-summary, so we build these indexes in
r radius fields through drawing circles, which lowers the index cost significantly. While translating, the
property path of SPARQL 1.1 is exploited that makes the translation more simple efficient. Experimental
results on both synthetical and real datasets show that our solution improves the query performance under
guaranteeing the correctness. In the future, we hope to focus on the optimization of the produced SPARQL
queries and the maintenance of these indexes so as to improve SPARQL query efficiency.
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