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Abstract. Traveling salesman problem (TSP) is extensively studied in combinatorial optimization and
computer science. This paper gives a quick method to compute the sparse graphs for TSP based on the
random frequency quadrilaterals so as to reduce the TSP on the complete graph to the TSP on the sparse
graphs. When we choose N frequency quadrilaterals containing an edge e to compute its total frequency,
the frequency of e in the optimal Hamiltonian cycle will be bigger than that of most of the other edges. We
fix N to compute the frequency of each edge and the computation time of the quick method is O(n2). We
suggest two frequency thresholds to trim the edges with the frequency below the two frequency thresholds
and generate the sparse graphs for TSP. The experimental results show we compute the sparse graphs for
these TSP instances in the TSPLIB.

1. Introduction

Traveling salesman problem (TSP) is one typical NP-hard problem in combinatorial optimization and
it is NP-complete in computational complexity [1]. Given a set of n points {1, 2, · · · ,n} and the distance
function d(u, v) > 0 for two points u, v ∈ {1, 2, · · · ,n} and uv, a salesman wants to find the shortest cycle,
namely the optimal Hamiltonian cycle (OHC), that visits each of the n points exactly once. A cycle visiting
each of the points exactly once is a Hamiltonian cycle (HC) noted as a sequence σ = (v1, v2, · · · , vn) of the n
points where vk ∈ {1, 2, · · · ,n}(1 ≤ k ≤ n). The distance of σ is computed as d(σ) = d(v1, vn) +

∑n−1
i=1 d(vi, vi+1) .

The OHC has the minimum distance. Due to its close relationships with many industrial problems, such as
circuit design, vehicle routing, network optimization, machine scheduling, etc., the methods for TSP have
been extensively studied by the researchers in the related areas [2].

Most people resolve the TSP on the complete graph Kn. The accurate methods for TSP include the
integer programming, branch-and-bound, cutting plane and their variations [3]. Held and Karp [4], and
independently Bellman [5] gave the dynamic programming to resolve TSP in O(n22n) time. Until 2010, this
best computation time was updated to O(1.657n) by Björklund [6] using a Monte Carlo method. In theory,
these exact algorithms need the exponential computation time for resolving the worst case of TSP. The
experiments illustrated that the exact algorithms usually consumed long time to tackle the large scale of TSP
instances [7]. Under the assumption of PNP, many researchers turned to the approximation algorithms
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for TSP. In1998, Arora discovered the polynomial-time approximation scheme for the Euclidean TSP.
However, there is no constant-ratio approximation algorithm for the metric TSP, needless to say for the
general TSP [8].

Comparing the algorithms for TSP on the Kn, the exact algorithms for the TSP on the sparse graphs
have the relatively smaller computation time. Furthermore, the approximation ratio of the approximation
algorithms for the TSP on the sparse graphs is reduced to some extent. Given a sparse graph of average
degree d, the number of the HCs is no more than e( d

2 )n owing to Sharir and Welzl [9] where e is the base of
the natural logarithm. In addition, Björklund, Husfeldt, Kaski and Koivisto [10] proved that the TSP can
be resolved in O((2 − ε)n) computation time where ε depends on the maximum degree of the vertex in the
sparse graph. Given a 3-regular graph, TSP can be resolved in O(1.2312n) time due to Xiao and Nagamochi
[11]. In addition, there exists the polynomial-time approximation scheme for general TSP on the bounded
genus graph, see the work of Borradaile, Demaine and Tazari [12]. Thus, whether one researches the exact
algorithms or studies the approximation algorithms for TSP, one will obtain better results on the sparse
graphs rather than on the complete graphs of TSP.

The following question is how to reduce the Kn to a sparse graph for TSP. Hougardy and Schroeder
[13] gave a kind of sufficient condition according to k − opt move to discern many edges out of the OHC.
Their algorithm requires the O(n2 log n) computation time. We used the frequency graphs as another way
to compute the sparse graphs for TSP. The frequency graphs are initially computed with the optimal
k-vertex paths with the specified endpoints [14]. In the following, Yong and Remmel [15, 15] discovered the
frequency quadrilaterals and gave a binomial distribution model to reduce the number of edges that one
has to consider for resolving the TSP. They chose O(n2) frequency quadrilaterals for each edge to compute
the frequency graphs and derived the lower bound of the frequency of the OHC edges. The method to
compute the frequency graphs needs O(n4) time, which is hard to execute for the big scale of TSP instances.
Different from the above research, we compute the frequency of edges with a small number of random
frequency quadrilaterals where the time complexity of the method is reduced to O(n2). The quick method
will have more broad applications for the real-world TSP instances. Moreover, we analyze the change of
the minimum frequency of the OHC edge according to n and suggest the frequency threshold to compute
the sparse graphs containing the OHC.

This paper is organized as follows. The frequency quadrilateral is briefly introduced in section 1. The
quick method to compute the sparse graphs is given in section 2. In section 3, we shall test the quick
method with the TSP instances in TSPLIB at Heidelberg University and compare the results with the
previous research. The conclusions are drawn in the last section.

2. The frequency quadrilateral

Given a quadrilateral ABCD in Kn, the distances of the six edges (A,B), (A,C), (A,D), (B,C), (B,D)
and (C,D) are noted as d(A,B), d(A,C), d(A,D), d(B,C), d(B,D) and d(C,D), respectively. According to the
distances of the six edges, we compute the six optimal 4-vertex paths in the quadrilateral ABCD. The
frequency quadrilateral ABCD is computed with the six optimal 4-vertex paths. There are six frequency
quadrilaterals ABCD for a quadrilateral ABCD [15]. Based on the six frequency quadrilaterals ABCD, Wang
and Remmel found the frequency of an edge e ∈ {AB,AC,AD,BC,BD,CD} had the frequency f = 1, 3 and 5
twice, respectively. Given any one quadrilateral ABCD in the Kn, the corresponding frequency quadrilateral
ABCD will be one of the six frequency quadrilaterals. Thus, they assumed the probability that an edge e
has the frequency f = 1, 3 and 5 in a frequency quadrilateral containing e is p1(e) = p3(e) = p5(e) = 1/3.

For the OHC edges, they discovered some special frequency quadrilaterals where the frequency of their
frequency f is 3 and 5 rather than 1. For each of the OHC edges, there are at least n − 3 such frequency
quadrilaterals. It mentions that every edge is contained in

(n−2
2
)

frequency quadrilaterals in the Kn. Based on
the findings, they formulated the probability model for the OHC edges as p5(e) = 1

3 + 1
3(n−2) , p3(e) = 1

3 + 1
3(n−2)

and p1(e) = 1
3 −

2
3(n−2) . We see the probability p3(e), p5(e) of the OHC edges is bigger than those of the general

edges. When we choose N frequency quadrilaterals for each edge to compute their total frequency F(e), the
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expected frequency of the OHC edge e will be
(
3 + 2

n−2

)
N which is bigger than the average frequency 3N of

a general edge.

3. The quick method to compute the sparse graphs

In fact, the probability p5(e) or p3(e) is too conservative for the OHC edges. One sees the probability p1(e),
p3(e) and p5(e) will be equal as n is big enough. When we compute the total frequency F(e) of the edges e
according to the probability, there is no difference between the OHC edges and the other edges according
to their frequency. Our intuition is that the OHC will have more intersections of edges with the optimal
4-vertex paths so they should have the bigger p3(e) and p5(e) according to n [14–16]. The proof is long and it
is still in the preparation process. In theory, the p3(e) or p5(e) will reach 1 as n is big enough. This conclusion
has been verified by some TSP instances where the p3(e) and p5(e) are computed with all of the frequency
quadrilaterals in Kn [15]. However, the previous methods have the O(n4) computation time. Here we shall
use a small number N of random frequency quadrilaterals to compute the p3(e) and p5(e) to reduce the time
complexity and verify the performance of the quick method.

There are total
(n

4
)

quadrilaterals in the Kn. Each edge e is contained in the
(n−2

2
)

quadrilaterals. Meanwhile,
every edge is contained in the corresponding

(n−2
2
)

frequency quadrilaterals. In each of the frequency
quadrilaterals, the frequency of e will be 1 or 3 or 5. Here we choose N frequency quadrilaterals containing e
to compute its total frequency F(e). Therefore, the method to compute the frequency of all of edges becomes
O(Nn2). Moreover, we fix N for every TSP instances so that the time complexity is O(n2). With this quick
method, one will see we can still compute the sparse graphs for TSP with a given frequency threshold. In
addition, one will also see the change of the minimum frequency of the OHC edges according to n for the
general TSP instances.

For the OHC edges e, if the p5(e) = 1, it means the edge e has the frequency f = 5 in each of the frequency
quadrilaterals. When we choose N frequency quadrilaterals containing e to compute its total frequency,
F(e) = 5N. Therefore, we can use a frequency threshold close to 5N to trim the edges with the frequency
below the frequency threshold and preserve a sparse graph for TSP. In real applications, the p5(e) of some
OHC edges will be less than 1 as n is small. Before p5(e) ≈ 1, the p3(e) + p5(e) approaches 1 first as n is big
enough. For some small and medium TSP instances, the p3(e) + p5(e) will tends to 1 first. For the medium
and big scale of TSP instances, p5(e) will approach 1 as well as p3(e) + p5(e). When we choose N frequency
quadrilaterals containing an edge e, the number of the frequency quadrilaterals where e has the frequency
f = 3 and 5 is [Np3(e)] and [Np5(e)], respectively. For the OHC edges of small and medium TSP instances,
[Np3(e)] + [Np5(e)] will tend to N. In the worst cases, p5(e) = 0 and the minimum frequency of the OHC edge
is F(e) = 3N. In average case, p3(e) = p5(e) = 1

2 so F(e) = 4N. For the OHC edges of big scale of TSP, [Np5(e)]
will approach N and the F(e) tends to 5N.

Since the OHC edges e have the big probability p3(e) and p5(e), we give two methods to compute the
frequency of edges. The first method is to compute the frequency of e with the frequency quadrilaterals
where it has the frequency f = 3 and 5 among the N random frequency quadrilaterals. The second method
is to compute the frequency of an edge e with the frequency quadrilaterals where it has the frequency f = 5
among the N random frequency quadrilaterals. We also suggest two frequency thresholds to eliminate the
edges with the frequency below the two frequency thresholds. For the small and medium scale of TSP
instances, we use the frequency threshold F ≈ 4N. For large scale of TSP instances, the frequ3ncy threshold
F ≈ 5N is taken as the frequency threshold.

There is one problem we should explain. Given a quadrilateral ABCD, we assume the three sum
distances d(A,B) + d(C,D), d(A,C) + d(B,D) and d(A,D) + d(B,C) are unequal to compute the 6 optimal
4-vertex paths. We may have the equal sum distances d(A,B) + d(C,D) = d(A,C) + d(B,D) = d(A,D) + d(B,C)
for many quadrilaterals ABCD for some TSP instances. In this case, the quadrilateral ABCD contains 12
optimal 4-vertex paths. It is hard to choose the right 6 optimal 4-vertex paths to compute the frequency
quadrilaterals ABCD for the OHC edges. If the wrong optimal 4-vertex paths are selected, we will use the
mistaken frequency quadrilaterals to compute the frequency of the edges. The frequency of the OHC edges
will become smaller due to the restrictions of the frequency quadrilaterals. To avoid such cases, the small
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random distances are added to the distances of edges [15]. This method can make the three sum distances
d(A,B) + d(C,D), d(A,C) + d(B,D), d(A,D) + d(B,C) unequal as most as possible. The disadvantage is also
obvious that the random distances cannot guarantee to compute the big frequency F(e) for the OHC edges
in every experiment.

4. The experiments and analysis

We shall do experiments to compute the sparse graphs for several Euclidean TSP instances in TSPLIB
[17]. It mentions that the method can be applied to the other kinds of TSP instances as well. Given an edge
e in Kn, we choose N random quadrilaterals containing e to compute its frequency F(e). If the frequency
F(e) is bigger than the given frequency threshold F, it will be preserved. Otherwise, we will neglect it.
After all the

(n
2
)

edges are checked, a sparse graph will be computed. The OHCs of these TSP instances are
computed first with the Concorde Online [18]. The OHC is used to verify whether the preserved graphs lose
some OHC edges. For different TSP instances, the frequency threshold F may be different to compute the
sparse graphs because they include different percentage of frequency quadrilaterals ABCD where the three
sum distances d(A,B) + d(C,D), d(A,C) + d(B,D) and d(A,D) + d(B,C) are equal. The equal sum distances
d(A,B) + d(C,D), d(A,C) + d(B,D) and d(A,D) + d(B,C) will reduce the frequency of some OHC edges if the
wrong optimal 4-vertex paths are largely used.

For each TSP instance, we choose the frequency threshold F to compute the sparse graphs containing
the OHC or losing at most one OHC edge. Due to the randomness of the frequency quadrilaterals, the
results in various experiments will be different. To show the robustness of the quick method, we did three
experiments for every TSP instance. The results are shown in Table 1. N = 100 is the number of the
random frequency quadrilaterals containing each edge. TH represents the frequency threshold we used.
Si and li means the number of edges in the sparse graphs and the number of the lost OHC edges in the ith

experiment where 1 ≤ i ≤ 3. S̄ = S1+S2+S3
3 is the average number of the edges in the three sparse graphs. The

computation time is trivial for these examples and it is not shown. In Table 1, we compute the frequency of
an edge e with the 100 frequency quadrilaterals where its frequency f = 3 and 5. In Table 2, the frequency of
e is computed with the frequency quadrilaterals where e has the frequency f = 5. Therefore, the frequency
thresholds TH in the two Tables are different.

In Table 1, the TH is bigger than 3N and it tends to 4N according to n. It means the OHC edges have
more and more percentage of the frequency quadrilaterals where their frequency f = 3 and 5 as n rises. In
Table 2, we also see the frequency threshold TH increases according to n. Although the percentage of the
frequency quadrilaterals where the OHC edges have the frequency f = 5 is smaller than that where they
have the frequency f = 3 and 5, the percentage of the frequency quadrilaterals where the OHC edges have
the frequency f = 5 is obvious increasing according to n.

We compute the sparse graphs with the proper frequency thresholds TH for every TSP instance. In
Table 1, the number of the edges is reduced more than 4 times as that of the complete graph for the small
TSP instances. For the big TSP instances, it is reduced more than 8 times. The number of the edges will be
reduced more times for the bigger TSP instances. The number of the edges in the sparse graphs in Table 2
is smaller than that in Table 1 for these TSP instances. It says the second method (and frequency threshold)
is better than the first method (and frequency threshold) to compute the sparse graphs for TSP. The
computation time of the quick method is O(n2). It means the probability model and binomial distribution
model [15] still works well for small N so we can design the quick algorithms to compute the sparse graphs
for TSP.

In the end, we compare the experimental results for D657 and Rat783 in Table 2 with those in the other
two papers [15, 16], see Table 3. One sees the quick method computed the better results for D657 but
worse results for Rat783. The reason mainly depends on the computation of the frequency F(e) and the
frequency threshold TH. In addition, the percentage of the frequency quadrilaterals where the OHC edges
have the frequency 1, 3 and 5 are not considered. We will compute the frequency F(e) with the frequency
quadrilaterals where the edges e has the frequency 1, 3 and 5, respectively. Then, give the three frequency
thresholds TH for comparison to eliminate the edges. We will explore the suitable frequency thresholds in
the future work.
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Table 1: The experimental results for TSP instances according to the first frequency threshold.
TSP n N TH/N S1 \ l1 S2 \ l2 S3 \ l3 S̄/n
Berlin52 52 100 3.4 289 \ 0 298 \ 0 289 \ 1 6
A280 280 100 3.4 8616 \ 1 8620 \ 1 8608 \ 1 31
D493 493 100 3.5 23331 \ 1 23303 \ 0 23420 \ 1 47
D657 657 100 3.6 38618 \ 0 38494 \ 0 38560 \ 0 58
Rat783 783 100 3.6 51323 \ 1 51236 \ 0 51164 \ 1 65
Pcb1173 1173 100 3.7 104379 \ 1 104809 \ 1 104344 \ 0 89
U1432 1432 100 3.9 118843 \ 1 118885 \ 0 118858 \ 1 83

Table 2: The experimental results for TSP instances according to the second frequency threshold.
TSP n N TH/N S1 \ l1 S2 \ l2 S3 \ l3 S̄/n
Berlin52 52 100 2.7 253 \ 0 253 \ 1 244 \ 1 5
A280 280 100 2.8 6583 \ 0 6494 \ 1 6441 \ 0 23
D493 493 100 2.9 17906 \ 1 17924 \ 1 17950 \ 1 36
D657 657 100 3.0 30638 \ 0 30477 \ 1 30515 \ 1 46
Rat783 783 100 3.0 40735 \ 1 40755 \ 0 40812 \ 0 52
Pcb1173 1173 100 3.2 77291 \ 1 77384 \ 1 77456 \ 1 65
U1432 1432 100 3.3 107204 \ 1 107097 \ 1 107338 \ 1 74

Table 3: The comparisons of the three methods for D657 and Rat783.
TSP n N N[15] N[16] S̄ S̄[15] S̄[16]
D657 657 100 215496 107748 30222 32404 32509
Rat783 783 100 306153 153076 40716 32582 35732

5. Conclusion

We gave a quick method to compute the sparse graphs for TSP based on random frequency quadri-
laterals. The computation time is O(n2). Through experiments, we found the OHC edges have more and
more percentage of frequency quadrilaterals where they have the frequency f = 3 or 5 as n rises. Thus, we
can increase the frequency threshold for larger scale of TSP to compute the sparse graphs containing the
OHC. On the other hand, if we use the bigger number N, the quick method may compute the better results
whereas it needs more computation time. In the future, we will try different parameters N to compute the
sparse graphs and the frequency thresholds will be explored. In addition, we will apply the method to the
other kind of TSP instances for reducing the computation time of the algorithms for resolving them.
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