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Abstract. We show that some multifunctions F : K→ n(Y), satisfying functional inclusions of the form

Ψ
(
x,F(ξ1(x)), . . . ,F(ξn(x))

)
⊂ F(x)G(x),

admit near-selections f : K→ Y, fulfilling the functional equation

Ψ
(
x, f (ξ1(x)), . . . , f (ξn(x))

)
= f (x),

where functions G : K → n(Y), Ψ : K × Yn
→ Y and ξ1, . . . , ξn ∈ KK are given, n is a fixed positive integer, K

is a nonempty set, (Y, ·) is a group and n(Y) denotes the family of all nonempty subsets of Y.
Our results have been motivated by the notion of Ulam stability and some earlier outcomes. The main

tool in the proofs is a very recent fixed point theorem for nonlinear operators, acting on some spaces of
multifunctions.

1. Introduction

The question under what conditions an approximate solution to an equation can be replaced by an exact solution
to it (or conversely) and what error we thus commit seems to be very natural. The theory of Ulam (often also
called the Hyers-Ulam) type stability provides some convenient tools to investigate such issues. Let us only
mention that the study of such stability has been motivated by a problem raised by S. Ulam in 1940 and a
solution to it given by Hyers in [3]. For some updated information and further references concerning that
type of stability we refer to [1, 4, 5, 7]. We continue those investigations for some classes of inclusions for
multifunctions and our main results correspond to and/or generalize the earlier outcomes in [8–12].

In this paper K is a nonempty set, (Y, ·) is a group with the neutral element e, d is a complete metric in Y,
n(Y) is the family of all nonempty subsets of Y, bd(Y) is the family of all nonempty and bounded subsets
of Y, and bcl(Y) is the family of all closed sets from bd(Y). Moreover, as usual, BA denotes the family of all
functions mapping a set A , ∅ into a set B , ∅.

Let n ∈ N (positive integers), ξ1, . . . , ξn ∈ KK and Ψ : K × Yn
→ Y. We mainly investigate the Ulam

stability of the functional equation

φ(x) = Ψ(x, φ(ξ1(x)), . . . , φ(ξn(x))), x ∈ K, (1)
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in the class of functions φ : K → n(Y), but actually we study even more general issue of multifunctions
fulfilling several particular cases of the inclusion of the form

Ψ
(
x, φ(ξ1(x)), . . . , φ(ξn(x))

)
⊂ φ(x)G(x), x ∈ K, (2)

with a given G : K→ n(Y), where

Ψ
(
x, φ(ξ1(x)), . . . , φ(ξn(x))

)
:= Ψ

(
{x} × φ(ξ1(x)) × . . . × φ(ξn(x))

)
.

2. The main results

The following two theorems are the main results of this paper. The proofs of them are provided in the
last section.

In what follows, R+ denotes the set of nonnegative reals, the number (possibly also∞)

δ(A) = sup {d(x, y) : x, y ∈ A}

is said to be the diameter of A ∈ n(Y) and h stands for the Hausdorff distance, induced by the metric d in Y,
and given by

h(A,B) := max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}
, A,B ∈ n(Y).

It is well known that h is a metric if restricted to bcl(Y).
For 1 : K→ Y we denote by 1̂ the multifunction defined by

1̂(x) := {1(x)}, x ∈ K.

Next, we write
AB := {xy : x ∈ A, y ∈ B}, A,B ∈ n(Y),

1∏
i=1

xi = x1,
n+1∏
i=1

xi = xn+1

n∏
i=1

xi, x1, . . . , xn+1 ∈ Y,n ∈N,

and
n∏

i=1

Ai =

 n∏
i=1

xi : x1 ∈ A1, . . . , xn ∈ An

 , A1, . . . ,An ∈ n(Y),n ∈N.

In what follows we always assume that n ∈N, ξ1, . . . , ξn ∈ KK and G : K→ bd(Y) are fixed and

e ∈ G(x), x ∈ K. (3)

Our first main result reads as follows.

Theorem 2.1. Let M : K→ R+, c1, . . . , cn : K→ [0, 1) and Ψ : K × Yn
→ Y be such that

λ(x) := c1(x) + . . . + cn(x) < 1, x ∈ K,

max
i=1,...,n

λ(ξi(x)) ≤ λ(x), x ∈ K, (4)

max
i=1,...,n

M(ξi(x)) ≤M(x), x ∈ K, (5)

d(Ψ(x, z1, . . . , zn),Ψ(x,w1, . . . ,wn)) ≤
n∑

i=1

ci(x)d(zi,wi), (6)

x ∈ K, z1, . . . , zn,w1, . . . ,wn ∈ Y.
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Assume that F : K→ bd(Y) fulfils the functional inclusion

Ψ
(
x,F(ξ1(x)), . . . ,F(ξn(x))

)
⊂ F(x)G(x), x ∈ K, (7)

and

δ(F(x)G(x)) ≤M(x), x ∈ K. (8)

Then there exists a unique function f : K→ Y such that

Ψ(x, f (ξ1(x)), . . . , f (ξn(x))) = f (x), x ∈ K, (9)

h( f̂ (x),F(x)) ≤
M(x)

1 − λ(x)
, x ∈ K. (10)

If d is invariant (i.e., d(xz, yz) = d(x, y) = d(zx, zy) for x, y, z ∈ Y), then a very simple example of
Ψ : K × Yn

→ Y satisfying (6) is given by

Ψ(x, z1, . . . , zn) =

n∏
i=1

Ψi(x, zi), x ∈ K, z1, . . . , zn ∈ Y, (11)

with some Ψ1, . . . ,Ψn : K × Y→ Y and c1, . . . , cn : K→ [0, 1) such that

d(Ψi(x, z),Ψi(x,w)) ≤ ci(x)d(z,w), x ∈ K, z,w ∈ Y, i = 1, . . . ,n. (12)

The next theorem deals with such situation in the particular case where d is non-Archimedean (an
ultrametric).

Let us remind that a metric ρ in a set Z is non-Archimedean (or an ultrametric) provided

ρ(z,w) ≤ max {ρ(z, y), ρ(y,w)}, y, z,w ∈ Z;

then we say that (Z, ρ) is an ultrametric space (for some information on non-Archimedean analysis see, e.g.,
[6]).

Theorem 2.2. Let d be invariant and non-Archimedean, c1, . . . , cn : K→ [0, 1), Ψ1, . . . ,Ψn : K × Y→ Y, M : K→
R+, conditions (4), (5), and (12) be valid, and

λ(x) := max {c1(x), . . . , cn(x)}, x ∈ K.

Assume that F : K→ bd(Y) fulfilling (8) is a solution of the functional inclusion

n∏
i=1

Ψi(x,F(ξi(x))) ⊂ F(x)G(x), x ∈ K. (13)

Then there exists a unique function f : K→ Y such that

n∏
i=1

Ψi(x, f (ξi(x))) = f (x), x ∈ K, (14)

and (10) holds.

Remark 2.3. Note that conditions (4) and (5) are valid in particular in the situation when K = R, M and λ
are nondecreasing, and

ξi(x) ≤ x, x ∈ K, i = 1, . . . ,n.



J. Brzdęk, M. Piszczek / Filomat 31:17 (2017), 5489–5495 5492

3. An auxiliary result

For the proofs of Theorems 2.1 and 2.2 we need the following auxiliary fixed point result that has been
proved in [2]. To present it we must recall the basic notions from [2] (R stands for the set of real numbers).

Namely, given a, b ∈ RK and F,G ∈ n(Y)K, we write a ≤ b provided

a(x) ≤ b(x), x ∈ K,

and F ⊂ G provided F(x) ⊂ G(x) for x ∈ K. We say that Λ : R+
K
→ R+

K is non-decreasing if Λa ≤ Λb for
every a, b ∈ R+

K with a ≤ b.
In bcl(Y)K the Tychonoff topology (of pointwise convergence) is assumed, with the Hausdorff metric in

bcl(Y) and, for F : K→ n(Y), we denote by cl F the multifunction defined by

(cl F)(x) = cl F(x), x ∈ K.

Next, we write (
lim
n→∞

Hn

)
(x) := lim

n→∞
Hn(x), x ∈ K,

for each sequence (Hn)n∈N in bcl(Y)K that is convergent in bcl(Y)K. We say that an operator α : n(Y)K
→ n(Y)K

is i.p. (inclusion preserving) if
αF ⊂ αG, F,G ∈ n(Y)K,F ⊂ G;

α is l.p. (limit preserving) if

α
(

lim
n→∞

cl Hn

)
⊂ lim

n→∞
cl (αHn) (15)

for each sequence (Hn)n∈N in bd(Y)K such that the sequence (cl Hn)n∈N is convergent in bcl(Y)K and there
exists

lim
n→∞

cl (αHn) ∈ bcl(Y)K.

Finally, δ̃ : bd(Y)K
→ R+

K is given by the formula

δ̃F(x) = δ(F(x)), F ∈ bd(Y)K, x ∈ K.

Now, we are in a position to present the mentioned above fixed point result that can be easily derived
from [2, Theorem 1].

Theorem 3.1. Let Λ : RK
+ → R

K
+ be non-decreasing, α : bd(Y)K

→ bd(Y)K be i.p. and l.p., G : bd(Y)K
→ n(Y)K,

F ∈ bd(Y)K, GF ∈ bd(Y)K,

δ̃(αH) ≤ Λ(δ̃H), H ∈ bd(Y)K, (16)

αF ∪ F ⊂ GF, (17)

and

κ(x) :=
∞∑

n=0

Λn(δ̃(GF))(x) < ∞, x ∈ K. (18)

Then there exists a function f : K→ Y such that f̂ is a fixed point of the operator α (i.e., α f̂ = f̂ ) and

h
(

f̂ (x),F(x)
)
≤ κ(x), x ∈ K.
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Moreover, if G ∈ bd(Y)K satisfies the conditions

G ⊂ αG,

h
(
G(x),F(x)

)
≤ µ(x), x ∈ K,

with some µ : K→ R+ such that

lim inf
n→∞

Λn(κ + 2µ)(x) = 0, x ∈ K, (19)

then G = f̂ .

4. Proofs

Now we present the proofs of Theorems 2.1 and 2.2. Let us start with a proof for Theorem 2.1.

Proof. Define α : bd(Y)K
→ bd(Y)K by

αH(x) := Ψ(x,H(ξ1(x)), . . . ,H(ξn(x))), H ∈ bd(Y)K.

Then it is easily seen that it is i.p. For the convenience of readers we provide an elementary reasoning that
α is also l.p.

So, let (Hk)k∈N be a sequence in bd(Y)K such that the sequences (cl Hk)k∈N and (cl (αHk))k∈N are convergent
in bcl(Y)K. We show that

cl
[
α
(

lim
k→∞

cl Hk

)
(x)

]
= lim

k→∞
cl

(
αHk(x)

)
, x ∈ K, (20)

which actually is equivalent to the condition

lim
k→∞

h
(
αH0(x), αHk(x)

)
= 0, x ∈ K, (21)

where
H0 := lim

k→∞
cl Hk.

Take ε > 0, x ∈ K. There is k0 ∈N such that

h
(
H0(ξi(x)),Hk(ξi(x))

)
< ε, k > k0, i = 1, . . . ,n,

which yields

h(Ψ(x,H0(ξ1(x)), . . . ,H0(ξn(x))),Ψ(x,Hk(ξ1(x)), . . . ,Hk(ξn(x)))

≤

n∑
i=1

ci(x)h(H0(ξi(x),Hk(ξi(x))) ≤
n∑

i=1

ci(x)ε ≤ ε.

Thus (21) holds. So, we see that α is l.p.
Next, Λ : RK

+ → R
K
+, given by

Λa(x) :=
n∑

i=1

ci(x)a(ξi(x)), a ∈ RK
+, x ∈ K,
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is non-decreasing and

δ((αH)(x)) = δ
(
Ψ(x,H(ξ1(x))), . . . ,H(ξn(x)))

)
≤

n∑
i=1

ci(x)δ(H(ξi(x))) = Λ(δ̃H)(x)

for every x ∈ K and H ∈ bd(Y)K, which means that (16) holds.
Let G : bd(Y)K

→ n(Y)K be given by

GH(x) := H(x)G(x), x ∈ K,H ∈ bd(Y)K. (22)

Note that, for every x ∈ K,

Λ(δ̃(GF))(x) ≤
n∑

i=1

ci(x)δ(F(ξi(x))G(ξi(x))) ≤ λ(x)M(x)

and, in view of (4) and the equality

Λk(δ̃(GF))(x) =

n∑
i=1

ci(x)Λk−1(δ̃(GF))(ξi(x)),

in a similar way we get by induction on k

Λk(δ̃(GF))(x) ≤ (λ(x))kM(x), k ∈N.

Hence

κ(x) :=
∞∑

n=0

Λn(δ̃(GF))(x) ≤
M(x)

1 − λ(x)
=: µ(x), x ∈ K.

Note that, in particular, this means that (19) holds, because Λ is additive and nondecreasing and

Λnµ(x) ≤ (λ(x))nµ(x), x ∈ K.

Consequently, according to Theorem 3.1, there is a unique function f : K→ Y such that f̂ is a fixed point of
α and (10) is valid.

Next, we present a proof for Theorem 2.2.

Proof. We argue as in the proof of Theorem 2.1, with Λ : RK
+ → R

K
+ and α : bd(Y)K

→ bd(Y)K given by

αH(x) :=
n∏

i=1

Ψi(x,H(ξi(x))), H ∈ n(Y)K,

Λa(x) := max
i=1,...,n

ci(x)a(ξi(x)), a ∈ RK
+, x ∈ K.

So, observe that (12) yields

δ((αH)(x)) = δ
( n∏

i=1

Ψi(x,H(ξi(x)))
)
≤ max

i=1,...,n
δ(Ψi(x,H(ξi(x))))

≤ max
i=1,...,n

ci(x)δ(H(ξi(x))) = Λ(δ̃H)(x)
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for every x ∈ K, H ∈ bd(Y)K, which means that (16) holds. Further, α is i.p. and, analogously as in the proof
of Theorem 2.1, we can easily show that α is l.p.

Next, note that we have

Λ(δ̃(GF))(x) ≤ λ(x) max
i=1,...,n

δ(F(ξi(x))G(ξi(x))) ≤ λ(x)M(x)

for every x ∈ K with G : bd(Y)K
→ bd(Y)K given by (22). Analogously we get

Λk(δ̃(GF))(x) ≤ (λ(x))kM(x), x ∈ K, k ∈N,

by induction on k (in view of (4), (5) and (8)). Hence

κ(x) :=
∞∑

n=0

Λn(δ̃(GF))(x) ≤
M(x)

1 − λ(x)
=: µ(x), x ∈ K;

in particular, on account of (4) and (5), condition (19) is valid.
Consequently, according to Theorem 3.1, there exists a unique function f : K → Y such that f̂ is a fixed

point of α and (10) holds.
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