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Abstract. New fractional integral operators of order α ∈ R+ are introduced. These operators are defined
as the composition of the left and right (or the right and left) Riemann-Liouville fractional order integrals.
Some of their properties are studied. Analytical results of fractional integrals of several functions are
presented. For a numerical calculation of fractional order integrals, two numerical procedures are given. In
the final part of this paper, examples of numerical evaluations of these operators of three different functions
are shown in plots and the comparison of the numerical accuracy was analyzed in tables.

1. Introduction

Fractional calculus is as old as the traditional calculus proposed independently by Newton and Leibniz.
The theory of operators of non-integer order was initiated in 1695. Since then, several scientists studied this
question, among them Euler, Abel, Fourier, Liouville, Riemann, Grünwald, Letnikov, and many others.

Initially, the progress of fractional calculus was quite slow. However, after 1900 the theory of operators
of non-integer order has developed much faster. Many definitions of integral and differential operators are
proposed e.g. left and right Riemann-Liouville derivative and integral, left and right Caputo derivative, left
and right Grünwald-Letnikov derivative, Hadamard integral, Weyl integral, left and right Chen integral,
etc. For a review of definitions of fractional order operators that appear in mathematics, physics, and
engineering, we refer the reader to books [1, 11, 12, 20] and papers [13, 21].

Recently, a subtopic of fractional calculus has been growing in importance - it is fractional variational
calculus [2, 14–18, 23]. In such an approach we get differential and integral equations containing the left
and right fractional operators, simultaneously. Solutions of this type of equations contain a composition
of the left and right fractional Riemann-Liouville integrals [2, 7, 14]. Such a new type of fractional integral
operators has other properties than well-known operators like the left and right Riemann-Liouville integrals.

The study of properties of these new fractional integral operators it seems to be an interesting issue. We
present a selected properties, which could be useful in finding a solution of the Euler–Lagrange equations,
in the following part of the paper.

On the other hand, the ability to calculate this type of integrals is very important to get a graphical
interpretation of solutions of fractional variational differential equations. The analytical evaluations of
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new fractional integrals for any function are difficult to achieve. In some cases, we can express them
through special functions but it also causes difficulties with calculation of the function values. Therefore,
numerical methods are a useful tool to obtain an approximation of integrals with different types of kernel
[8–10, 19, 24, 27].

In the book [14], Klimek presented an original approach to obtain the solution for the Euler–Lagrange
equation where the composition of the left and right fractional integrals was used. Next, these types
of integral operators appeared when Blaszczyk and Ciesielski transformed a type of the Euler–Lagrange
equation into an integral form in [3, 4, 6]. The new notation of this type of the fractional operator was
presented for the first time in the paper [5]. All these above mentioned facts were inspiration for us to
deeply analyse this issue. Here, we study several properties and give two numerical procedures for the
numerical calculation of new fractional integral operators.

2. Preliminaries

Let us introduce new fractional integral operators, namely Iα,na+,b− and Iα,nb−,a+ .

Definition 2.1. We define the fractional integral operators Iα,na+,b− and Iα,nb−,a+ of order α > 0, for n ∈ N ∪ {0}, on the
finite interval t ∈ [a, b], for function f ∈ L1 (a, b), as follows

I
α,n
a+,b− f (t) :=

(
Iαa+ Iαb−

)n
f (t) =

(
Iαa+ Iαb− Iαa+ Iαb− . . .

)
︸                ︷︷                ︸

n times

f (t) , (1)

I
α,n
b−,a+ f (t) :=

(
Iαb− I

α
a+

)n
f (t) =

(
Iαb− I

α
a+ Iαb− I

α
a+ . . .

)
︸                ︷︷                ︸

n times

f (t) . (2)

Definition 2.2. (Left and right Riemann-Liouville fractional integrals). The left and right Riemann-Liouville frac-
tional integrals Iαa+ and Iαb− of order α > 0 are defined by [11, 12, 20, 22, 25]

Iαa+ f (t) :=
1

Γ (α)

∫ t

a

f (τ)

(t − τ)1−α dτ for t > a, (3)

Iαb− f (t) :=
1

Γ (α)

∫ b

t

f (τ)

(τ − t)1−α dτ for t < b, (4)

respectively. Here Γ (α) denotes the Euler’s gamma function.

Definitions (1) and (2) for n = 1 can also be written in the following way

I
α,1
a+,b− f (t) =

1
Γ2 (α)

t∫
a

1

(t − τ)1−α

b∫
τ

f (ξ)

(ξ − τ)1−α dξ dτ, (5)

I
α,1
b−,a+ f (t) =

1
Γ2 (α)

b∫
t

1

(τ − t)1−α

τ∫
a

f (ξ)

(τ − ξ)1−α dξ dτ, (6)

and for α = 1 are simplified to the forms

I
1,1
a+,b− f (t) =

t∫
a

b∫
τ

f (ξ) dξ dτ, I1,1
b−,a+ f (t) =

b∫
t

τ∫
a

f (ξ) dξ dτ. (7)
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3. Properties

Now, we introduce some properties of fractional integral operators (1) and (2). Let us begin with
linearity of such operators.

Property 3.1. (Linearity) Let c1 and c2 be constants and f , 1 ∈ L1 (a, b), then

I
α,n
a+,b−

(
c1 f (t) + c21 (t)

)
= c1I

α,n
a+,b− f (t) + c2I

α,n
a+,b−1 (t) , (8)

I
α,n
b−,a+

(
c1 f (t) + c21 (t)

)
= c1I

α,n
b−,a+ f (t) + c2I

α,n
b−,a+1 (t) . (9)

Proof. It follows from linearity of the fractional Riemann-Liouville operators.

Next, we introduce very useful recurrence formulas for fractional integral operators

Property 3.2. (Recurrence formula for integrals)

I
α,n
a+,b− f (t) =

{
f (t) , if n = 0
I
α,1
a+,b−I

α,n−1
a+,b− f (t) , if n > 0 , (10)

I
α,n
b−,a+ f (t) =

{
f (t) , if n = 0
I
α,1
b−,a+I

α,n−1
b−,a+ f (t) , if n > 0 . (11)

Proof. It follows directly from definitions (1) and (2).

Property 3.3. (Symmetry) Let α > 0 and Q is the reflection operator on the interval [a, b], then for f (t) ∈ L1(a, b)
the following formulas are valid

QIα,na+,b− f (t) = I
α,n
b−,a+ f (a + b − t) , (12)

QIα,nb−,a+ f (t) = I
α,n
a+,b− f (a + b − t) . (13)

Proof. Let us start from the following relation (using the following properties [25]: QIαa+ = Iαb−Q and
QIαb− = Iαa+ Q)

QIα,1a+,b− f (t) = QIαa+ Iαb− f (t) = Iαb−QIαb− f (t) = Iαb− I
α
a+ Q f (t) = Iα,1b−,a+ Q f (t) . (14)

Next, by using the above relation and recurrency (see Eq. (10)) we can write

QIα,na+,b− f (t) = QIα,1a+,b−I
α,n−1
a+,b− f (t) = Iα,1b−,a+ QIα,n−1

a+,b− f (t) = Iα,2b−,a+ QIα,n−2
a+,b− f (t) = ... = Iα,nb−,a+ Q f (t) . (15)

The operator Q for function f (t) on the interval [a, b] has property Q f (t) = f (a + b − t). By using such
property and putting it into Eq. (15) we obtain formula (12). In a similar way one can prove formula (13).

Property 3.4. (Fractional integration by parts ) Let n ∈N∪ {0}, f (t) and 1(t) are the arbitrary integrable functions,
then the following rules occur

b∫
a

f (t) · Iα,na+,b−1 (t) dt =

b∫
a

I
α,n
a+,b− f (t) · 1 (t) dt, (16)

b∫
a

f (t) · Iα,nb−,a+1 (t) dt =

b∫
a

I
α,n
b−,a+ f (t) · 1 (t) dt. (17)
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Proof. We are reminded of the rule for fractional integration by parts (proved in Samko et al [25])

b∫
a

f (t) · Iαa+1 (t) dt =

b∫
a

Iαb− f (t) · 1 (t) dt. (18)

First, we show the proof of the first relation (16) for the case of n = 1. We obtain

b∫
a

f (t) · Iα,1a+,b−1 (t) dt =

b∫
a

f (t) · Iαa+ Iαb−1 (t) dt =

b∫
a

Iαb− f (t) · Iαb−1 (t) dt =

b∫
a

Iαa+ Iαb− f (t) · 1 (t) dt =

=

b∫
a

I
α,1
a+,b− f (t) · 1 (t) dt. (19)

By using the recurrence formula (see: Property 3.2) we have

b∫
a

f (t) · Iα,na+,b−1 (t) dt =

b∫
a

f (t) · Iα,1a+,b−I
α,n−1
a+,b− 1 (t) dt =

b∫
a

I
α,1
a+,b− f (t) · Iα,n−1

a+,b− 1 (t) dt = ... =

=

b∫
a

I
α,n−1
a+,b− f (t) · Iα,1a+,b−1 (t) dt =

b∫
a

I
α,n
a+,b− f (t) · 1 (t) dt. (20)

The proof of (17) should be treated in a similar manner.

In particular, the following relation is satisfied

b∫
a

I
α,n−n1
a+,b− f (t) · Iα,n1

a+,b−1 (t) dt =

b∫
a

I
α,n−n2
a+,b− f (t) · Iα,n2

a+,b−1 (t) dt, (21)

where n1 ∈ {0, ...,n} and n2 ∈ {0, ...,n}.

Property 3.5. (Composition fractional integrals with m-th integer order integral Im) Let m ∈ N ∪ {0}, then the
following relations take place

Im
I
α,n
a+,b− f (t) = Iα,na+,b− I

m f (t) , Im
I
α,n
b−,a+ f (t) = Iα,nb−,a+ Im f (t) . (22)

Property 3.6. (Identity operator) For α = 0 and n ≥ 0 we define the Identity operator I0 as

I
0,n
a+,b− := I0, I0,n

b−,a+ := I0 (23)

and we obtain respectively

I
0,n
a+,b− f (t) = I0 f (t) = f (t) , I0,n

b−,a+ f (t) = I0 f (t) = f (t) . (24)
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4. Certain Examples of Integrals

The fractional integrals (1) and (2) for n = 1 of the constant function f (t) = C are given by

I
α,1
a+,b−C = C

(t − a)α(b − a)α

Γ2 (α + 1) 2F1

(
1,−α;α + 1;

t − a
b − a

)
= C

(t − a)α(b − a)α

Γ (α + 1) Γ (−α)
G1,2

2,2

(
−

t − a
b − a

∣∣∣∣∣ 0, 1 + α
0,−α

)
, (25)

I
α,1
b−,a+ C = C

(b − a)α(b − t)α

Γ2 (α + 1) 2F1

(
1,−α;α + 1;

b − t
b − a

)
= C

(b − a)α(b − t)α

Γ (α + 1) Γ (−α)
G1,2

2,2

(
−

b − t
b − a

∣∣∣∣∣ 0, 1 + α
0,−α

)
, (26)

where 2F1 and G1,2
2,2 are special functions (hypergeometric function and Meijer G-function, respectively)

[11, 25, 26].
The fractional integrals of functions f (t) = (b − t)−α and f (t) = (t − a)−α for 0 < α < 1 and n = 1 have the

forms

I
α,1
a+,b− (b − t)−α =

Γ (1 − α)
Γ (1 + α)

(t − a)α, (27)

I
α,1
b−,a+ (t − a)−α =

Γ (1 − α)
Γ (1 + α)

(b − t)α. (28)

For a more general form of functions f (t) = (b − t)k−α and f (t) = (t − a)k−α, k ∈ N ∪ {0} and k > α − 1, for
n = 1 we obtained

I
α,1
a+,b− (b − t)k−α =

Γ (k − α + 1)
Γ (k + 1)

(b − a)k

Γ (α + 1)
(t − a)α2F1

(
−k, 1;α + 1;

t − a
b − a

)
= (t − a)α(b − a)kΓ (k − α + 1)

k∑
j=0

(−1) j

Γ
(
k − j + 1

)
Γ
(
α + j + 1

) ( t − a
b − a

) j
, (29)

I
α,1
b−,a+ (t − a)k−α =

Γ (k − α + 1)
Γ (k + 1)

(b − a)k

Γ (α + 1)
(b − t)α2F1

(
−k, 1;α + 1;

b − t
b − a

)
= (b − t)α(b − a)kΓ (k − α + 1)

k∑
j=0

(−1) j

Γ
(
k − j + 1

)
Γ
(
α + j + 1

) ( b − t
b − a

) j

. (30)

The next example, for function f (t) = tα, is based on the results presented in [14]

I
α,1
0+,b− t

α = b3αG2 1
3 3

[
t
b

∣∣∣∣∣ α, 2α, 3α + 1
3α, α, 0

]
. (31)

In the case of α = 1 and n = 1 for functions f (t) = 1, f (t) = t, f (t) = tn and f (t) = sin(t) we get

I
1,1
a+,b−1 =

a2

2
− ab + bt −

t2

2
, (32)
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I
1,1
b−,a+ 1 =

b2

2
− ab + at −

t2

2
, (33)

I
1,1
a+,b− t =

a3

6
−

ab2

2
+

b2t
2
−

t3

6
, (34)

I
1,1
b−,a+ t =

b3

6
−

a2b
2

+
a2t
2
−

t3

6
, (35)

I
1,1
a+,b− t

n =
an+2

(n + 1) (n + 2)
−

abn+1

n + 1
+

bn+1t
n + 1

−
tn+2

(n + 1) (n + 2)
, (36)

I
1,1
b−,a+ tn =

bn+2

(n + 1) (n + 2)
−

an+1b
n + 1

+
an+1t
n + 1

−
tn+2

(n + 1) (n + 2)
, (37)

I
1,1
a+,b− sin (t) = sin (t) + (a − t) cos (b) − sin (a) , (38)

I
1,1
b−,a+ sin (t) = sin (t) + (b − t) cos (a) − sin (b) . (39)

On the basis of relations (36) and (37) for a = 0 and b = 1 (calculated by using the recurrence) for α = 1
and n = 1, ..., 5 we obtain

I
1,1
0+,1− t =

t
2
−

t3

6
, (40)

I
1,2
0+,1− t =

5t
24
−

t3

12
+

t5

120
, (41)

I
1,3
0+,1− t =

61t
720
−

5t3

144
+

t5

240
−

t7

5040
, (42)

I
1,4
0+,1− t =

277t
8064

−
61t3

4320
+

t5

576
−

t7

10080
+

t9

362880
, (43)

I
1,5
0+,1− t =

50521t
3628800

−
277t3

48384
+

61t5

86400
−

t7

24192
+

t9

725760
−

t11

39916800
. (44)

The above integrals for α = 1 allow us to verify the validity of the numerical methods by comparing the
numerical values and analytical values.

5. Numerical Evaluation of Fractional Integrals

The definitions of both fractional integral operators (1) and (2) seem to be a very complicated. The
mathematical software known to us allows one to determine only the values of particular cases of functions.
But the analytical evaluations of fractional integrals for any function are rather impossible. Also, the
closed-form solution for the fractional integrals (expressed i.e. through the Meijer’s G function or any
hypergeometric function – see previous Chapter) causes difficulties with respect to the calculation of the
function values with the plot visualization. For this reason the numerical methods are a useful tool. In
this section we propose a numerical method that allows us to obtain a useful approximation for fractional
integrals of analytic functions.

Taking into account the important property of the recurrence relations (10) and (11), the complicated
problem is reduced to the interchangeable calculations of the left and right Riemann–Liouville fractional
integrals and they are repeated in a loop. We make the following decompositions

ϕ(0) (t) := f (t) ,

I
α,n−k+1
a+,b− ϕ(k−1) (t) :=

{
I
α,n−k
a+,b− ϕ(k) (t) , if n > k − 1,
ϕ(k−1) (t) , if n = k − 1,

for k = 1, ...,n, (45)
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where

ϕ(k) (t) := Iα,1a+,b−ϕ(k−1) (t) = Iαa+ Iαb−ϕ(k−1) (t) = Iαa+φ(k) (t) ,
φ(k) (t) := Iαb−ϕ(k−1) (t) ,

(46)

and for the second integral operator

ϕ(0) (t) := f (t) ,

I
α,n−k+1
b−,a+ ϕ(k−1) (t) :=

{
I
α,n−k
b−,a+ ϕ(k) (t) , if n > k − 1,
ϕ(k−1) (t) , if n = k − 1,

for k = 1, ...,n, (47)

where

ϕ(k) (t) := Iα,1b−,a+ϕ(k−1) (t) = Iαb− I
α
a+ϕ(k−1) (t) = Iαb−φ(k) (t) ,

φ(k) (t) := Iαa+ϕ(k−1) (t) .
(48)

The functions ϕ(k) (t), for k = 0, ...,n and φ(k) (t), for k = 1, ...,n are auxiliary functions. We can especially
use only two functions ϕ (t) and φ (t) if they are interchangeably used in successive iterations in the
above recurrences. The substitution ϕ(k=0) (t) := f (t) allows us to use any simplification of notations and
simultaneously it is the initial step in iterations.

In the numerical approach, the continuous time interval t ∈ [a, b] is replaced by a grid constructed by
discrete points. Here, we use the homogeneous grid of nodes: ti = a + i ∆t, i = 0, ...,N, with the constant
time step ∆t = (b − a)/N, where N + 1 is a number of nodes. Now, we present the scheme for the numerical
evaluation of both integral operators of fractional order (3) and (4) obtained by the method which is based
on the direct discretization of integral operators using the trapezoidal rule of integration [20]. We introduce
the function ψ (t) (≡ ϕ (t) or φ (t)) and the values of the function ψ (t) at the node ti we denote by ψi = ψ(ti).
We will determine function values at the nodes ti. In our early papers [4, 5] we have determined the discrete
forms for the approximation of the fractional integral operators in the following forms

Iαa+ψ (t)
∣∣∣
t=ti
≈

i∑
j=0

u(α)
i, j ψ j, (49)

Iαb−ψ (t)
∣∣∣
t=ti
≈

N∑
j=i

v(α)
i, j ψ j, (50)

where coefficients u(α)
i, j and v(α)

i, j are as follows

u(α)
i, j =

(∆t)α

Γ (α + 2)


0 if i = 0 ∧ j = 0
(i − 1)α+1

− iα+1 + iα (α + 1) if i > 0 ∧ j = 0(
i − j + 1

)α+1
− 2

(
i − j

)α+1 +
(
i − j − 1

)α+1 if i > 0 ∧ 0 < j < i
1 if i > 0 ∧ j = i

, (51)

v(α)
i, j =

(∆t)α

Γ (α + 2)


0 if i = N ∧ j = N
(N − i − 1)α+1

− (N − i)α+1 + (N − i)α (α + 1) if i < N ∧ j = N(
j − i + 1

)α+1
− 2

(
j − i

)α+1 +
(
j − i − 1

)α+1 if i < N ∧ i < j < N
1 if i < N ∧ j = i

. (52)

One can notice that in order to compute the values of operators (49) and (50) at every node ti, we need to
use values of functions at many nodes of the domain.

From a computational point of view, in order to find the discrete values of the function ϕ (t) at nodes
ti, i = 0, ...,N as results of the action of the operators Iα,na+,b− f (t) and Iα,nb−,a+ f (t) on the given analytic function
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f (t), we propose two procedures calc IRL and calc ILR, respectively – see the listings of Algorithm 1.

Algorithm 1 Numerical evaluations of ϕ (t) = Iα,na+,b− f (t) (procedure calc IRL) and ϕ (t) = Iα,nb−,a+ f (t) (proce-
dure calc ILR)

1: procedure calc IRL( f (t),α,n,a,b,ϕ,N)
2: integer n,N,i,k;
3: real α,a,b,∆t;
4: real array

(
ϕ
)

0:N,
(
φ
)

0:N
;

5: ∆t← (b − a)/N
6: for i← 0 to N do
7: ϕi ← f (a + i ∆t)
8: end for
9: for k← 1 to n do

10: for i← 0 to N do

11: φi ←
N∑
j=i

v(α)
i, j ϕ j

12: end for
13: for i← 0 to N do

14: ϕi ←
i∑

j=0
u(α)

i, j φ j

15: end for
16: end for
17: return ϕ
18: end procedure

1: procedure calc ILR( f (t),α,n, a,b,ϕ,N)
2: integer n,N,i,k;
3: real α,a,b,∆t;
4: real array

(
ϕ
)

0:N,
(
φ
)

0:N
;

5: ∆t← (b − a)/N
6: for i← 0 to N do
7: ϕi ← f (a + i ∆t)
8: end for
9: for k← 1 to n do

10: for i← 0 to N do

11: φi ←
i∑

j=0
u(α)

i, j ϕ j

12: end for
13: for i← 0 to N do

14: ϕi ←
N∑
j=i

v(α)
i, j φ j

15: end for
16: end for
17: return ϕ
18: end procedure

The procedures calc IRL and calc ILR are defined with seven arguments. These arguments have the
same meaning as described before. As mentioned earlier, we use 2 auxiliary arrays ϕ and ψ of N + 1
elements, which store the discrete values at the nodes ti: ϕi ≡ ϕ(ti) and φi ≡ φ(ti). In lines 6–7, we set the
initial values in array ϕ – it corresponds to the case for k = 0. In each procedure there is the main loop (lines
9–16) with two internal loops, in which the discrete values at each node are calculated for the particular left
and right fractional order integrals. Finally, the array ϕ stores the discrete values being the approximation
of the fractional operator and this array is returned back in procedures.

The running time of both proposed procedures in Algorithm 1 is estimated as O(n ·N2) and the memory
usage is equal to O(N).

6. Example of Computations

In Figures 1–3 we present plots of the numerical values of Iα,na+,b− f (t) for a = 0, b = 1, n ∈ {1, 2, 5},
α ∈ {0.25, 0.5, 0.75, 1, 1.5, 2} and for three different functions: f (t) = 1 (Fig. 1), f (t) = tα (Fig. 2), and
f (t) = sin (πt) (Fig. 3). Additionally, in one of the plots in each figure, the maximal values of Iα,n0+,1− f (t) on
the time interval t ∈ [0, 1] for the range n = 0, ..., 100 and different parameters α are shown. The calculations
are performed on the basis of the procedure calc IRL for N = 1000 presented in Algorithm 1.

If we make the comparison between the obtained numerical results with the early given analytical
solutions of fractional operators for the selected cases (especially when parameter α is an integer number),
we can conclude that the numerical solutions seem to be quite acceptable.

In order to verify the accuracy of the presented numerical algorithms, we considered two cases of the
evaluation of fractional integralIα,1a+,b− f (t). We have chosen two functions f (t) = 1 and f (t) = tα. In both cases
we assumed α = 0.8 and n = 1. The analytical solutions are given in Equations (25) and (31), respectively.
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The analytical values of the special functions occurring in both equations have been obtained by using
Mathematica software. In Tables 1 and 2 we show the values of analytical solutions at the selected values
of argument ti. Additionally, we presented the corresponding numerical values calculated for the different
numbers of grid nodes N ∈ {10, 100, 1000, 10000} as the differences between analytical and numerical values.
One can note that the differences decrease with decreasing the time step.
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Figure 1: Numerical evaluation of Iα,n0+ ,1−1 and maximal values of Iα,n0+ ,1−1 for different values of α
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Figure 2: Numerical evaluation of Iα,n0+ ,1− tα and maximal values of Iα,n0+ ,1− tα for different values of α
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Figure 3: Numerical evaluation of Iα,n0+ ,1− sin (πt) and maximal values of Iα,n0+ ,1− sin (πt) for different values of α

Table 1: Comparison of analytical and numerical results for F(t) = Iα,11+ ,5−1 where α = 0.8

ti Fanalytical(ti) Fanalytical(ti) − Fnumerical(ti)
N = 10 N = 100 N = 1000 N = 10000

1.0 0.0 0.0 0.0 0.0 0.0
1.4 1.603782641276 2.272·10−4 2.380·10−6 2.397·10−8 2.400·10−10

1.8 2.659414587381 4.360·10−4 4.492·10−6 4.512·10−8 4.515·10−10

2.2 3.491362960862 6.622·10−4 6.783·10−6 6.806·10−8 6.810·10−10

2.6 4.154917792624 9.229·10−4 9.428·10−6 9.456·10−8 9.460·10−10

3.0 4.673908578891 1.239·10−3 1.264·10−5 1.268·10−7 1.268·10−9

3.4 5.060354802376 1.644·10−3 1.679·10−5 1.683·10−7 1.684·10−9

3.8 5.319816544103 2.206·10−3 2.257·10−5 2.264·10−7 2.265·10−9

4.2 5.452808068017 3.087·10−3 3.178·10−5 3.188·10−7 3.190·10−9

4.6 5.453459496831 4.866·10−3 5.111·10−5 5.137·10−7 5.141·10−9

5.0 5.296740032259 1.899·10−2 5.197·10−4 1.348·10−5 3.429·10−7
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Table 2: Comparison of analytical and numerical results for F(t) = Iα,10+ ,5− tα where α = 0.8

ti Fanalytical(ti) Fanalytical(ti) − Fnumerical(ti)
N = 10 N = 100 N = 1000 N = 10000

0.0 0.0 0.0 0.0 0.0 0.0
0.5 4.431319693990 2.149·10−2 2.159·10−4 2.172·10−6 2.176·10−8

1.0 7.765185719592 2.898·10−2 2.934·10−4 2.947·10−6 2.950·10−8

1.5 10.699870501652 3.504·10−2 3.547·10−4 3.559·10−6 3.562·10−8

2.0 13.288578942473 4.049·10−2 4.097·10−4 4.110·10−6 4.113·10−8

2.5 15.519176458783 4.579·10−2 4.632·10−4 4.644·10−6 4.647·10−8

3.0 17.355754017428 5.130·10−2 5.189·10−4 5.202·10−6 5.205·10−8

3.5 18.747377186550 5.750·10−2 5.819·10−4 5.833·10−6 5.836·10−8

4.0 19.626840258994 6.539·10−2 6.631·10−4 6.648·10−6 6.651·10−8

4.5 19.898439868907 7.822·10−2 7.999·10−4 8.024·10−6 8.029·10−8

5.0 19.365920767018 1.564·10−1 3.285·10−3 7.578·10−5 1.836·10−6

7. Conclusions

In this paper we studied fractional integral operators which are defined as the multiply composition of
the left and right (or the right and left) Riemann-Liouville fractional integrals. Certain properties of these
operators were shown, like linearity. symmetry or integrating by parts. Analytical results of fractional
integrals of a constant and power functions are presented. Two numerical procedures are proposed for
numerical evaluation of fractional order integrals. Examples of numerical evaluations of these operators of
three different functions are also shown. The presented new type of fractional integral operators over a finite
interval of integration can be extended to an infinite interval of integration, meaning that one can consider
the following forms Iα,n

−∞,∞ and Iα,n
∞,−∞. Such a type seems to be an interesting issue for consideration i.e. of

field potential (as in the case of the Riesz or Weyl fractional integrals). We think that our proposition of new
integral operators and the obtained results will be an open topic for discussion and future research-works.
We invite researchers to study this topic, especially to extend our analytical and numerical results presented
in this paper, to search for the application of these operators in various fields of science.
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