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Module Amenability of Restricted Semigroup
Algebras Under Module Actions
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Abstract. In this article, we show that module amenability with the canonical action of restricted semigroup
algebra l1

r (S) and semigroup algebra l1(Sr) are equivalent, where Sr is the restricted semigroup of associated
to the inverse semigroup S. We use this to give a characterization of module amenability of restricted
semigroup algebra l1

r (S) with the canonical action, where S is a Clifford semigroup.

1. Introduction

The notion of module amenability for a Banach algebra A which is a Banach module over another
Banach algebraU is defined by Amini in [1]. He showed that for an inverse semigroup S, the semigroup
algebra l1(S) is module amenable as a l1(E)- module with the multiplication right action and the trivial left
action, where E is the set of idempotents of S if and only if S is amenable.

In this paper we show that module amenability of l1(S) as an l1(E)-module with the canonical action
implies its module amenability as an l1(E)-module with the trivial left action. The main difference is that
the corresponding equivalence relation leads a Clifford homomorphic image. We characterize module
amenability of the restricted semigroup algebra l1r (S) as an l1r (E)-module with the canonical action, for each
Clifford semigroup S. Also we show that in the canonical action, the module amenability of the semigroup
algebra l1(Sr) and the restricted semigroup algebra l1r (S) are equivalent. This could be considered as the
module version of a result of [6], [9], which asserts that the amenability of the semigroup algebra l1(Sr) and
the restricted semigroup algebra l1r (S) are equivalent.

Throughout this paper,A andU are Banach algebras such thatA is a BanachU-module with compatible
actions

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ U),

and
α · (β · a) = (αβ) · a, (a · β) · α = a · (βα) (a ∈ A, α, β ∈ U).

The Banach algebraU acts trivially onA from left (right) if for each α ∈ U and a ∈ A, α · a = f (α)a (a · α =
f (α)a), where f is a continuous character onU.

Let X be a BanachA-module and a BanachU-module with compatible actions

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x,
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(α · x) · a = α · (x · a) (a ∈ A, α ∈ U, x ∈ X);

and similarly for the right and two sided actions. We call X aA-U-module. If in addition,

α · x = x · α (α ∈ U, x ∈ X)

then X is called a commutativeA-U-module. If X is a commutativeA-U-module, then so is X∗, under the
actions

(α · f )(x) = f (x · α), (a · f )(x) = f (x · a) (a ∈ A, α ∈ U, x ∈ X, f ∈ X∗)

and similarly for the right actions.
Let J be the closed ideal ofA generated by elements of the form α · ab − ab · α for α ∈ U, a, b ∈ A.
LetA, U and X be as above. A bounded map D : A→ X is called a module derivation if

D(a ± b) = D(a) ±D(b) , D(ab) = Da · b + a ·Db (a, b ∈ A)

and
D(α · a) = α ·D(a) , D(a · α) = D(a) · α (a ∈ A, α ∈ U).

Note that D is not necessarily linear, but still its boundedness implies its norm continuity (since D preserves
subtraction). When X is commutative, each x ∈ X defines a module derivation

δx(a) = a · x − x · a (a ∈ A).

These are called inner module derivations.

Definition 1.1. A is called module amenable (as anU-module) if for any commutativeA-U-module X, each module
derivation D : A→ X∗ is inner.

Definition 1.2. A discrete semigroup S is called an inverse semigroup if for each x ∈ S there is a unique element
x∗ ∈ S such that xx∗x = x and x∗xx∗ = x∗. An element e ∈ S is called an idempotent if e = e2.

Throughout this paper S is an inverse semigroup with the set of idempotents E. An inverse semigroup
whose idempotents are in the center is called a Clifford semigroup [3]. A Clifford semigroup S is called a
semilattice if each element of S is idempotent [7]. It is easy to see that E is a commutative subsemigroup of
S and l1(E) can be regarded as a subalgebra of l1(S).
Let l1(E) acts on l1(S) by the multiplication from right and trivially from left, that is

δe ∗ δs = δs, δs · δe = δse (s ∈ S, e ∈ E).

In this case, J is the closed ideal generated by

{δs − δse : s ∈ S, e ∈ E}.

Consider an equivalence relation on S as follows

h ≈ k⇔ δh − δk ∈ J (h, k ∈ S).

It is shown in [8] that the quotient S/ ≈ is a discrete group.

2. Module amenability of restricted semigroup algebras

Here we consider l1(E) acts on l1(S) with canonical actions, that is

δe · δs = δes, δs · δe = δse (s ∈ S, e ∈ E).
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The closed ideal Jc of l1(S) is generated by

{δes − δse : s ∈ S, e ∈ E}.

We consider an equivalence relation on S as follows

s ∼ t⇔ δs − δt ∈ Jc (s, t ∈ S).

An equivalence relation R on a semigroup S is called a congruence if

(s, t) ∈ R⇒ (as, at), (sa, ta) ∈ R (s, t, a ∈ S).

Congruences on any semigroup provide some information about its homomorphic images[2].
Let ρ be a congruence on S and P a property of homomorphic image S/ρ, we call ρ a P congruence. A

least congruence ρ such that S/ρ is a P congruence is called the least P congruence.

Lemma 2.1. ∼ is the least Clifford congruence on S.

Proof. Since Jc is an ideal of l1(S), ∼ is a congruence. From definition of ∼, it follows that es ∼ se. Thus S/ ∼
is a Clifford semigroup. Hence the least Clifford congruence ξ ⊆∼.

Let Iγ be the closed ideal of l1(S) generated by

{δs − δt : (s, t) ∈ γ},

for each Clifford congruence γ on S. Clearly

sγ t⇔ δs − δt ∈ Iγ (s, t ∈ S).

Since (es, se) ∈ γ, it follows that δes − δse ∈ Iγ. Thus Jc ⊆ Iγ and so ∼⊆ γ, for each Clifford congruence γ.
Hence ∼⊆ ξ.

Let X be a commutative l1(S)-l1(E)-module. Throughout this paper we denote by • the left and right actions
of l1(E) on X and by · the left and right actions of l1(S) on X.

Proposition 2.2. If l1(S) is module amenable as an l1(E)-module with the canonical action then l1(S) is module
amenable as an l1(E)-module with the trivial left action.

Proof. Suppose that l1(E) acts on l1(S) with the trivial left action and the multiplication right action. Let X
be a commutative l1(S)-l1(E)-module and D : l1(S)→ X∗ be a module derivation. We have

δse · x = δs · (δe • x) = δs · (x • δe)
= (δs · x) • δe = δe • (δs · x)
= (δe • δs) · x
= δs · x.

Thus J · X = 0 and similarly X · J = 0. Now since S/ ≈ is a group, es ≈ se and so δes − δse ∈ J. It follows that
X·Jc = Jc ·X = 0 and even if l1(E) acts on l1(S) with the canonical action, X is a commutative l1(S)-l1(E)-module.
In additions, we have

D(δse) = D(δs) • δe = δe •D(δs) = D(δs).

Therefore D|J = 0 and so D(δes − δse) = 0. Now if l1(E) acts on l1(S) with the canonical action, then we have

D(δ f · δs) = D(δs · δ f ) = D(δs) • δ f = δ f •D(δs) ( f ∈ E, s ∈ S).

Hence D is a module derivation. So by assumption it is inner.

Similar to the Proposition 2.1.5 of [10] we have the following Lemma.
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Lemma 2.3. Let l1(S) has a bounded approximate identity. Then l1(S) is module amenable as an l1(E)-module
with the canonical action if and only if each module derivation D : l1(S) → X∗ is inner, for each pseudo-unital
l1(S)-l1(E)-module X.

Theorem 2.4. Let S be a semilattice. Then l1(S) is module amenable as an l1(E)-module with the canonical action if
and only if l1(S) admits a bounded approximate identity.

Proof. Suppose that l1(S) admits a bounded approximate identity (λi). Consider a module derivation
D : l1(S)→ X∗. For each e ∈ S and λ ∈ Cwe have

D(λδe) = λδe •D(δe) = λD(δe).

Thus D is a derivation. By Lemma 2.3, we may suppose that X is pseudo-unital l1(S)-module. That is, for
each x ∈ X, there exist f , 1 ∈ l1(S) and there is y ∈ X such that x = f · y · 1. It follows that

D(δe)(x) = D(δe)( f · y · 1)
= D(δe)((lim

i
λi · f ) · y · 1)

= D(δe)(lim
i
λi · ( f · y · 1))

= lim
i

D(δe) · λi( f · y · 1)

= lim
i

D(δe) · λi(x).

Similarly D(δe)(x) = limi λi ·D(δe)(x). From the equalities D(δe f ) = D(δe) • δ f = D(δ f ) • δe, it follows that

D(δe) · δe f = D(δ f ) · δe, (1)

for each e, f ∈ S. In addition, we have

D(δe f ) = δe •D(δe f ) = δe • (δe ·D(δ f ) + D(δe) · δ f )
= δe ·D(δ f ) + D(δe) · δe f .

Thus

D(δe) · δe f = D(δe) · δ f . (2)

From (1), (2), it follows that D(δe)·δ f = D(δ f )·δe, for each e, f ∈ S. Thus we have for eachλi, D(λi)·δe = D(δe)·λi
and so D(δe) = limi D(λi · δe) = limi(D(δe) · λi + λi · D(δe)). This implies that D(δe)(x) = limi D(δe) · λi(x) +
limi λi · D(δe)(x) = 2D(δe)(x), for each x ∈ X. Hence D(δe)(x) = 0, for x ∈ X and so D(δe) = 0. Conversely,
since l1(S) is a commutative l1(S)-module, it has a bounded approximate identity by [1].

Note that by the above theorem, for semilattice S = (N,∨), l1(S) is module amenable as an l1(E)-module
with the canonical action. This example shows that module amenability of a semilattice algebra does not
imply finiteness of the semilattice.

Consider the multiplication ◦ on the Banach space l1(S) by∑
s∈S

f (s)δs ◦
∑
t∈S

1(t)δt =
∑
r∈S

∑
st=r, s∗s=tt∗

f (s)1(t)δr,

if there are no elements t, s ∈ S with st = r and s∗s = tt∗, the multiplication is taken as zero. Under the usual
l1-norm, (l1(S), ◦) is a Banach algebra. We denote this Banach algebra by l1r (S) as in [6]. In the particular
case,

δs ◦ δt =

{
δst s∗s = tt∗

0 otherwise.
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Note that l1r (E) could be regarded as a subalgebra of l1r (S). Here we consider l1r (E) acts on l1r (S) with the
canonical actions. The closed ideal JB of l1r (S) is generated by

{δs| s ∈ S, ss∗ , s∗s}.

Consider an equivalence relation ∼B on S as follows

s ∼B t⇐⇒ δs − δt ∈ JB (s, t ∈ S).

Note that in general, ∼B is not a congruence.
Let X be a commutative l1r (S)-l1r (E)- module. Throughout the rest of this paper we denote left and right
actions of l1r (E) on X by • and left and right actions of l1r (S) on X by ·.

Proposition 2.5. l1r (S) is module amenable as an l1r (E)-module with the canonical action if and only if l1r (S)/JB is
module amenable as an l1r (E)-module.

Proof. Let X be a commutative l1r (S)-l1r (E)-module. Consider a module derivation D : l1r (S) → X∗. For each
s ∈ S such that ss∗ , s∗s, we have

D(δs) = D(δs ◦ δs∗s) = D(δs) • δs∗s

= δs∗s •D(δs) = D(δs∗s ◦ δs)
= 0.

Thus D|JB = 0 and so D̃ : l1r (S)/JB → X∗ defined by D̃(δs + JB) = D(δs) is a module derivation. We conclude
that if l1r (S)/JB is module amenable as l1r (E)-module with the canonical action, then l1r (S) is module amenable
as l1r (E)-module with the canonical action. The converse follows using the module homomorphism π :
l1r (S)→ l1r (S)/JB and Proposition 2.5 of [1].

Proposition 2.6. Let S be a Clifford semigroup. Then l1r (S) is module amenable as an l1r (E)-module with the canonical
action if and only if l1(S) is amenable.

Proof. Suppose that l1r (S) is module amenable as an l1r (E)-module with the canonical action. Since S is
a Clifford semigroup, l1r (S) is a commutative l1r (E)-module with the canonical action. It follows from
Proposition 2.2 of [1] that l1r (S) has a bounded approximate identity. From [6], it follows that E is finite. Let
I be the closed principal ideal of S generated by e ∈ E. Thereby l1r (I) is an l1r (E)-module with the following
compatible actions

δ f · δi := δ f ◦ δi, δi · δ f := δi ◦ δ f ( f ∈ E, i ∈ I).

Consider the module homomorphism ϕ : l1r (S) → l1r (I) defined by ϕ(δs) = δs ◦ δe. Thus l1r (I) is module
amenable as an l1r (E)-module with the canonical action. Now put Ie = {b ∈ I : SbS ( I}. Similarly Ie is
an ideal of I and ψ : l1r (I) → l1r (I/Ie) is a module homomorphism and so l1r (I/Ie) is module amenable as an
l1r (E)-module with the canonical action, by Proposition 2.5 of [1]. Similarly I/Ie � {0} ∪ Ge and l1r ({0} ∪ Ge) is
module amenable as an l1r (E)-module with the canonical action. We claim that l1(Ge) is amenable. Let X be
a l1(Ge)-module and D : l1(Ge)→ X∗ be a derivation. Since l1r ({0} ∪ Ge) = l1({0} ∪ Ge) = l1(Ge) ⊕ Cδ0, with the
following new definition, X is a commutative l1({0} ∪ Ge)-l1({0, e})-module with the compatible actions

x · δ0 = δ0 · x = 0.

Consider D̃ : l1({0} ∪ Ge) → X∗ defined by D̃(δ1) = D(δ1)(1 ∈ Ge) and D(δ0) = 0. Clearly if l1(S) is an
l1(E)-module with the canonical action, then D̃ is a module derivation and so it is inner. Therefore D is an
inner derivation and this proves that l1(Ge) is amenable. It follows that Ge is amenable and by [5], l1(S) is
amenable. The converse is clear.

Corollary 2.7. Let S be a semilattice. Then l1r (S) is module amenable as an l1r (E)-module with the canonical action if
and only if S is finite.
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Proof. It follows from the above proposition that l1(S) is amenable. Since S is semilattice, S is finite. The
converse is clear.

Proposition 2.6 means that if l1r (S) is module amenable as an l1r (E)-module with the canonical action then
l1(S) is module amenable with the canonical action for each Clifford semigroup. The converse fails in
general. For example let (N,∨) be the semigroup of positive integers with maximum operation, that is
m ∨ n = max(m,n). By Theorem 2.4, l1(S) is module amenable as an l1r (E)-module with the canonical action
but l1r (S) is not module amenable as an l1r (E)-module with the canonical action by Corollary 2.7.

For an arbitrary inverse semigroup S with the set of idempotents E, the restricted product of elements
x and y of S is xy if x∗x = yy∗ and undefined, otherwise. The set S with this restricted product forms a
discrete groupoid [4]. If we adjoin a zero element 0 to this groupoid and put 0∗ = 0, then we get an inverse
semigroup Sr with the multiplication rule

x � y =

{
xy x∗x = yy∗

0 otherwise,

for each x, y ∈ S ∪ {0}. The inverse semigroup Sr is called the restricted semigroup of S (see[6]).
Note that (l1(E ∪ {0}), �) could be regarded as a subalgebra of l1(Sr) and we denote this Banach algebra by
l1(Er). Thereby l1(Sr) is an l1(Er)- module with the canonical action. The closed ideal Jr of l1(Sr) is generated
by

{δs − δ0| s ∈ S, s∗s , ss∗}.

We consider an equivalence relation ∼r on Sr as follows

s ∼r t⇐⇒ δs − δt ∈ Jr (s, t ∈ Sr).

Proposition 2.8. ∼r is the least Clifford congruence on Sr.

Proof. From definition of Jr, s ∼r t for each s, t ∈ S such that ss∗ , s∗s and tt∗ , t∗t. Since each element s such
that ss∗ = s∗s is contained in a maximal subgroup of S, S is a semilattice of groups. Thus S/ ∼r is a Clifford
semigroup by Theorem 4.2.1 of [3]. Thus ∼r is a Clifford equivalence. Suppose that s ∼r t and l ∈ S. Since
δs − δt ∈ Jr, it follows that δl · (δs − δt) ∈ Jr and (δs − δt) · δl ∈ Jr. Thus δl�s − δl�t ∈ Jr and δs�l − δt�l ∈ Jr and so
∼r is a congruence on Sr. Finally suppose that ρ is a Clifford congruence on Sr. Let Iρ be the closed ideal of
l1(Sr) generated by {δs − δt : (s, t) ∈ ρ}. Clearly

sρ t⇔ δs − δt ∈ Iρ.

Since for each s ∈ S such that ss∗ , s∗s we have (s, 0) ∈ ρ, it follows that δs − δ0 ∈ Iρ, for each Clifford
congruence ρ. Thus Jr ⊆ Iρ and so for each Clifford congruence ρ, ∼r⊆ ρ. Hence ∼r is the least Clifford
congruence on Sr.

Note that δs ◦ δt = 0 in l1r (S) but δs · δt = δ0 in l1(Sr), for each s, t ∈ S such that s∗s , tt∗. Thus l1r (S) is not a
subalgebra of l1(Sr).

Proposition 2.9. Let S be an inverse semigroup. Then the following statements are equivalent:
(i): l1r (S) is module amenable as an l1r (E)-module with the canonical action.
(ii): l1(Sr) is module amenable as an l1(Er)-module with the canonical action.
(iii): l1(Sr/ ∼r) is amenable.

Proof. (i) ⇒ (ii) Suppose that X is a commutative l1(Sr)-l1(Er)-module and D : l1(Sr) → X∗ is a module
derivation. Then the following module actions are well-defined

δs ∗B x =

{
0 δs · x = δ0 · y( f or some y ∈ X)
δs · x otherwise,
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for each s ∈ S and similarly for the right action. Also l1r (E) acts on X by the following action

δe •B x =

{
0 δe • x = δ0 • y( f or some y ∈ X)
δs • x otherwise.

Therefore X is a commutative l1r (S)-l1r (E)-module. Consider D̃ : l1r (S)→ X∗ defined by

D̃(δs) =

{
D(δs) D(δs) , D(δ0)
0 otherwise.

D̃ extends to a module derivation and so it is inner. Therefore D is inner.
(ii)⇒ (i) Suppose that X is a commutative l1r (S)-l1r (E)- module. It is enough to define δ0 ·x = δ0 •x = 0, then X
is a commutative l1(Sr)-l1(Er)- module. Let D : l1r (S)→ X∗ be a module derivation. Consider D̃ : l1(Sr)→ X∗

defined by

D̃(δs) =

{
D(δs) s ∈ S
0 s = 0.

It is easy to sea that D̃ extends to a module derivation and so it is inner. Therefore D is inner.
(ii) ⇒ (iii) Since l1(Sr) is module amenable as an l1(Er)-module with the canonical action, it follows from
Proposition 2.5 of [1] that l1(Sr/ ∼r) is module amenable as an l1r (Er)-module with the canonical action. Now
by Propositions 2.6, 2.8, l1(Sr/ ∼r) is amenable.
(iii)⇒ (ii) Let X be a commutative l1(Sr)-l1(Er)-module. Since Jr ·X = X · Jr = 0, the following module actions
are well-defined

(δs + Jr) · x := δs + Jr, x · (δs + Jr) := x · δs (x ∈ X, δs ∈ l1(Sr)),

therefore X is an l1(S)/Jr-module. Suppose that D : l1(Sr) → X∗ is a module derivation, and consider
D̃ : l1(Sr)/Jr → X∗ defined by D̃(δs + Jr) = D(δs) (s ∈ Sr). We have

D(δs) = D(δs · δs∗s)
= D(δs) • δs∗s

= δs∗s •D(δs)
= D(δs∗s · δs)
= D(δs∗s�s)
= 0.

By the above observation, D̃ is also well-defined. Moreover,

D(λδs) = λδss∗ •D(δs) = λD(δs) (λ ∈ C).

Thus D is linear and so D̃ is linear. Hence D̃ is inner. Therefore D is an inner module derivation. So
l1(Sr)/Jr is module amenable as an l1(Er)-module with the canonical action and it follows from proposition
2.5 of [1] and l1(Sr/ ∼r) � l1(Sr)/Jr that l1(Sr/ ∼r) is module amenable as an l1(Er)-module with the canonical
action.
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