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Generalized Sherman-Morrison-Woodbury Formula for the
Generalized Drazin Inverse in Banach Algebra
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Abstract. In this article, we investigate the generalization of Sherman-Morrison-Woodbury formula for
the generalized Drazin inverse for elements in Banach algebra.

1. Introduction and Preliminaries

Let A be a complex unital Banach algebra with unit 1. The sets of all invertible, nilpotent and quasi-
nilpotent elements (c(a) = {0}) of A will be denoted by A~!, A" and A, respectively.
The generalized Drazin inverse of a € A (or Koliha—Drazin inverse of a) is the element b € A which
satisfies
bab=b, ab=ba, a-a’beAM.

If the generalized Drazin inverse of a exists, it is unique and denoted by a?. Then, we say that the element
a is generalized Drazin invertible. The set of all generalized Drazin invertible elements of A is denoted by
A,

The Drazin inverse is a special case of the generalized Drazin inverse for which it holds a — a%b € A"
instead of a — a?b € A ie. the Drazin inverse of a is the element b which satisfies bab = b, ab = ba and
a*1b = a¥, for some nonnegative integer k. The least such k is called the Drazin index of a and it is denoted
by i(a). The Drazin inverse of a is denoted by aP. Obviously, if a is Drazin invertible, then it is generalized
Drazin invertible.

The group inverse is the Drazin inverse for which the condition a — a?b € A" is replaced with a = aba,
i.e. i(a) = 1. We use a” to denote the group inverse of 4, and we use A" and AP to denote the sets of all
group invertible and Drazin invertible elements of A, respectively.

Recall that a € A is generalized Drazin invertible if and only if there exists an idempotent p = p*> € A
such that 4
ap = pa € AM, a+pe A

Then p = 1 — aa? is the spectral idempotent of a corresponding to the set {0}, and it will be denoted by a™. The

generalized Drazin inverse a’ double commutes with a, that is, ax = xa implies a/x = xa‘.
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We use the following lemma.
Lemma 1.1. [1, Lemma 2.4] Let p,q € A" and let pg = 0. Then p + q € A,

Sherman and Morrison [4] and Woodbury [5] discovered the formula for the inverse of matrices. The
original Sherman-Morrison-Woodbury (for short SMW) stands

A+YGZ) 1 =AT1-AYG + 27 A YY) 1 Z7 AT,
where A, G, Y, and Z are matrices of the appropriate size such that A, G and G + Z*A~1Y are invertible.
The SMW formula is also valid for the elements of Banach algebra. The following theorem proves it.

Theorem 1.2. Leta,g,y,z € Asuch thata,g € AL and let g=' +za'y be also invertible. Then a +ygz is invertible
and

(a+ ygz)’1 =g - a’ly(g’l + za’ly)’lza’l. @)

Proof. Letb=a+ygzand t = g~' + za~'y. Note that za~'y = t — g~1. If the right hand side of (1) is denoted
by m, we obtain
1

bm = (a+ygz)a” —a‘lyt_lza_l)

= aa!- aa’lyt’lza’l + ygza’l - ygza’lyt’lza’l
= 1-ytlza' +ygza™ — yg(t — g )t 'za™?

1 1

= 1- yi?‘lza_1 +ygza " — ygtt‘lza_l + ygg_lt_lza_

1

Analogously,

mb (@t - a‘lyt‘lza‘l)(a + 1y9z)

1+alygz—a 'yt 'z —a 'yt 'za lygz

T+altygz—atyt'z—ayt ' (t— g gz
=1
Now, we can conclude that b is invertible and it’s inverse is m. So, we proved that (1) holds. [
In this paper, we will consider the generalized case of SMW formula. We will generalize the SMW

formula to the cases when a and a + ygz are not invertible, but generalized Drazin invertible.

2. Results

The first result is the generalization of the Theorem 2.3 [2], which is proved for the operators on the
Hilbert space. We will generalize the SMW formula for the elements of Banach algebra. The generalization
is up to the case of generalized Drazin inverse.

Theorem 2.1. Leta,g € A%, y,z € Aand b = a + ygz,t = g° + zay such that b, t € A°.
If
ba’ =0, %" =0, yg"=0, gt"=0,

then

(a+ ygz)d =q% - a”’y(gd + zady)dzad. (2)
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Proof. The condition b™a = 0 gives us bba? = a?. Analogously, from the other three conditions, we obtain
baa® = b, ygg® = y and gtt? = g. Using these equations, we get

lygt = blyglg" +za'y) = bygg’ + bygza’y
= Py +bb-a)ay = by + bba'y - baa'y
= Vy+aly -y =aly,
and then

Vlyg = blygtt = a'yt’.
Now, we can conclude

b = blaa = b(b - ygz)a = b'ba” - bygza® = a® — a®ytiza’.
The theorem has been proved. [

Analogously to the Theorem 2.1, we can prove the following theorem.

Theorem 2.2. Leta,g € A%, y,z€ Aandb =a+ ygz,t = g* + za®y such that b, t € A",
If
" =0, 4" =0, g"z=0, t"g=0,

then
(a+ ygz)d =a% - ady(gd + zady)dzad. (3)

Proof. The conditions a®b™ = 0,a™b" = 0, g™z = 0, +"g = 0, imply the equations b = aab?, a’ = abl*, z = gg'z
and g = t'tg. Using these equations, we get

tgzb’ = (¢° + zay)gzb? = g?gzb” + zaygzb*
zb% + za (b — a)b® = zb® + za“bb* — zaab?

= zb'+za® — 2 =z,

and then

gzb® = t7tgzb” = t1za".
Now, we have

b = a%ab? = a%(b - yg2)b" = abb" - a'ygzb® = a® — a'yt'za’.
The theorem has been proved. O

The next theorem is the generalization of the Theorem 2.1 [3] which is proved for the modified matrices.
We will prove the following result for the elements of Banach algebra and generalize the SMW formula to
the case of generalized Drazin inverse.

Theorem 2.3. Leta,g € A%, y,z€ A b=a+ygz t = ¢ + za'y, t € A and
a'y=0, yg"=0, g"z=0, yt"=0, t'z=0.

Then b € A4 and

~+00
b o= (0 - a'yt'za”) |1 + Z(ad — a'yt'za"y a ytza"a" |. 4)

n=0
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+00
Proof. Denote with m = a? —a’ytiza® and with s = Y. (a? — a'yt?za®)"a’yt?za"a™. Also, let D be the right-hand
n=0
side of the equation (6). So, D = m(1 + ).
Since aa™ = a™a? = 0, we have sa? = 0 and s*> = 0. Also, it holds aa’m = a%aa® — a®aa’yt?za® = m = maa,
which implies
+00 +oo
aa’s = aa” Z m"a’yt'za"a" = aaayt'za™ + Z an’m"a’ytiza"a"™ = s.
n=0 n=1
Since the conditions a™y = 0, "z = 0 and yg™ = 0 imply, respectively, the equations y = aa’y, z = tz
and y = ygg’, we have
bD = bm(l+s) = (ba' - badytdzad)(l +5)
= (aa” + ygza® — aa’yt'za’ — ygza®yt'za®)(1 + s)
= (aa” + ygza® — yt'za" - yg(t — gt za")(1 + 5)
= (aa” + ygza® — yt'za” — ygtt'za® + ygg't'za")(1 + 5)
= (aa” + ygza® — yt'za’ — ygza® + yt'za)(1 + s)
= aa®(1+5)=aa" +5s.

Analoguosly, the conditions yt™ = 0 and g™z = 0 imply, respectively, the equations y = yt/t and z = gg?z.
Since a™b = a™(a + ygz) = a"a, we have

+00
mb + msb = (@ — a’yt'za)(a + ygz) + Z m" gt ytiza"a"b
n=0

Db

n+l 1

+00
= ala+ adygz - adytdzada - adytdzadygz + Z m””adytdza a
n=0

+00
= a%a+a’ygz - a'yt'zaa — ayt(t - g9z + Z m"ayt'za"a"
n=1
= ala+ adygz - adytdzada - adytdtgz + adytdgdgz +s— adytdza”
= a%a+a%ygz - ayt'z(aa’ + a") - a'ygz + a'yt'z + s
= ala+s.

Since a and a? commute, we have bD = Db.
Further, we have
DbD = m(1 + s)(aa® + s) = maa® + ms + msaa® + ms> = m + ms = D.

Finally, since we already calculate that b = aa®, we have

b-b’D b—b(aa® +s) = ba™ — bs

+00
= ba" - b|a%ytza™ + Z m"a'yt'za"a"
n=1
+00
= ba" - (a+ ygz)a’yt'za™ — bm Z m" el ytiza" a"
n=1
= ba" —aa’yt"za"™ — ygza'yt'za™ — aasa

= ba" - yt'za™ — yg(t — ¢")t'za™ — sa
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= ba" - yt'za™ — ygtt'za™ + ygg'tiza” — sa
= ba" — yt'za™ — ygza™ + yt'za™ — sa

= ba" —ygza™ —sa

= qaa" —sa

Since a™a? = 0 and a™m = 0, we get
+00 +oo
(Sa)z — mnad tdzawrlan mnad tdzawrlan =0,
¥ ¥
n=0 n=0

which implies that sa is the nilpotent element, so it is also the quasi-nilpotent element.
Now, we have aa™, sa € A™! and

d

aa™sa = asa — a*a’sa = asa —asa = 0,

so, we can apply the Lemma 1.1 and we get that b — b?D = aa™ — sa € A™M.

We have proved that D € A is such that bD = Db, DbD = D and b — b?D € A™!. Thus, D is generalized
Drazin inverse of b. [

As a corollary of the Theorem 2.3, we will prove the following result. The obtained result in the next
corollary generalize the Theorem 2.4 [2] proved for the operators on Hilbert space.

Corollary 24. Leta,g€ A%, y,z€e A b=a+ygz, t = ¢ + za’y, t € A and

Tt

a'y=0, za"=0, yg"=0, g"z=0, yt"=0, t'z=0.
Then b € A and

b =a - a'ytiza’.

Proof. The conditions from the Theorem 2.3 are satisfied, so we have the equation
+00

b = (@@ - a’yt"za") |1 + Z(ad — a'yt'za®) ayt'za"a" |. (5)

n=0

+00
Since za™ = 0, we have Y (a? — a?ytiza)"a’ytiza"a™ = 0 and b” = o — a®ytiza’. O
n=0

Further, as the corollary of the Theorem 2.3, we can get the formula for the generalized Drazin inverse
for the sum of elements in Banach algebra. We will apply Theorem 2.3 in the case when g = 1,z = 1 and
when the element 1 + a?y is invertible.

Corollary 2.5. Leta€ A, ye At =1+a'ye A landa™y = 0. Thena + y € A and

+00
@+y) =tta?|1 -7 Z(adt_l)”a”a” . (6)
n=0
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Proof. Since the conditions of the Theorem 2.3 are satisfied, we get that a + v is generalized Drazin invertible

and it holds
+o00
(a+ y)d = (@ - adyt‘lud) [1 + Z(ad - adyt‘lad)"adyt‘la”a”]
n=0

(@@ — (t — D) 1a) (1 + Z(ud (A 1)t‘1a”a"]
n=0

+00
@ —a + 712 (1 + Z(t‘lad)”(t - 1)t‘1a”a”]
n=0
+00 +oo
— t—lad 1+ Z(t—lad)nanan _ Z(t—lad)nt—lanan]
n=0 n=0
+00 +00
= a1 +a"+ Z(t‘lad)"a"a" — g7 - Z(t_lad)”t_la"a"]
n=1 n=1
+00
= W 1+a"—t1a" - Z t‘l(adt_l)"a”a”J
n=1

+00
= 1 1+a" - Z tl(adtl)”a”a”]
n=0

+00
=t |1 -+ Z(udt_l)”u”a”].
n=0

Analogously to the proof of the Theorem 2.3, we have proved the following result.

Theorem 2.6. Leta, g€ A%, y,z€ A, b=a+ygz, t = ¢ +za'y, t € A and
za" =0, yg"=0, ¢g"z=0, yt"=0, t'z=0.
Then b € A and
+00

=11+ Z a"a"yt'za(a® - a’yt'za")" | (a® - ayt?za®).
n=0

(7)

Proof. The proof of this theorem is similar to the proof of the Theorem 2.3. Because of that, we will write

only the results after calculations. Denote the right-hand side of the equation (7) with D. So, we have

+00
Db = bD = aa” + Z a"a"yt"za"(a® — aytza")",

n=0
DbD =D,
+00
127 — 4T oy gd o ded _ dgddyn qnil
b—b"D =aa aZaaytza(a a“yt'za®)" | € AT
n=0

O

As a corollary of the previous Theorem 2.6, we can get the formula for the generalized Drazin inverse

for the sum a + z under conditions that za™ = 0,2 € A% and 1 + za? € AL
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Corollary 2.7. Letac A, ze A t=1+za" € A and za™ = 0. Then a + z € A and

+00

(a+zy=|1-a" Z a”(tlad)”tl] a’t . (8)
n=0

Proof. Notice that za? =t — 1, so it holds a/ — at"'za? = a® — a’t'(t — 1) = a“t'. Now, appling the Theorem

2.6 to the elements a,z, y =1, g = 1, we have

(a+z)

+00
1+ Z e adt_lzad)”] @ — a%tza?)
n=0
+o00
= |1+ Z a”a”t‘lzad(adt‘l)”]adt‘l
n=0
+00
= [1+a"t 'z + Z a”a”1f_1za’i(a"li,‘_1)”Ja‘iif‘1

+00
= [1+a" ¢t -1)+ Z a’a' Nt - 1)(adt1)”]adt1

+00
— 1+4" nt—l + Z b4 n(adt Zanant—l(adt—l)n]adt—l
n=1
+00
= |[1+a"—a™" ' —a" Z a”(t_lad)"t_l] a1
n=1

+00
— 1—4" Z ﬂn(t_lﬂd)nt_l]ﬂdt_l

n=0

The next theorem generalize SMW formula and holds under some new conditions.

Theorem 2.8. Leta,g,y,z € Asuch thata,g € A’ and b = a + ygz, t = g* + za'y such that t € AL, If
_l]tn — gntd/ tng — td n/ anytdzad — adytdzan, ba™ € ﬂqnil/

then b € A4 and
v =a? - a'yt'za’.

Proof. Letm = a” — a®yt?za". Using the conditions gt* = g™t and t"g = t'g™, we have

aa® + ygza® — aa'yt'za” — ygza'ytiza®

bm
= aa” + ygza® — (1 — a™)yt'za® — yg(t — g")t"za"
= aa’ + ygza® — (1 — a")yt'za® — ygtt'za" + ygg't'za"
= aa” + ygza® — yt'za’ + a"yt'za" — yg(1 - t%)za® + y(1 - g™ )t za”
= aa® +ygza® — yt'za’ + a"yt'za" — ygza® + ygt™za® + yt'za" — yg"t'za®
= aa” +a"yt"za® + y(gt™ — g"t")za"
= aa’ +a"yt"za" 9)
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and
mb = a%a+ adygz - adytdzada - adytdzadygz
= a%a+a'ygz - a'ytz(1 - a") - "yt (t — ¢')gz
= ala+a’ygz - a'yt'z(1 — a") - a’yt'tgz + a’ytig gz
= a'a+a'ygz - a®yt'z + a®ytiza™ — a'y(1 - V) gz + a’yt'(1 - g")z
= a%a+a’ygz - a'yt'z + a'ytiza™ - a’ygz + "yt gz + a’yt'z — a'yt'g"z
= a'a+a'yt'za™ +a’y(t"g — t'97)z
= ala+ adytdza”. (10)

Since a™ytza? = a'yt?za™, we can conclude that bm = mb.
Notice that the condition a™yt?za® = a®ytza™ and the fact that a™ is idempotent imply
a"yt'za’ = a"a"yt'za” = a"a’yt'za™ = 0,
so it holds a™ytza® = a?yt?za™ = 0 and we have bm = mb = aa”.

Further, we have

mbm = a‘aa’ — a®ytiza’aa’ = m
Finally,
b-b*m = a+ygz—a*a® - ygzaa’
= aa™ + ygza"
= ba" e AM

From all proved above, we have that b € A? and b = m = a? — a'ytiza’. 0O

Since b — b*m = b — mb* = (1 — mb)b = a™b, the condition ba™ € A" in the Theorem 2.8 can be replaced
by a™b € A

Lemma 2.9. Leta,g,y,z € Asuchthata,g € A and t = g* + za'y such that t € A% If gt™ = g™+, " g = t'9™ and
a™ytiza® = a®ytiza”, then ygza™ = ytiza™ and a"ygz = a"ytiz.
Proof. As we have proved in the Theorem 2.8, the equation a™ytza’ = a’yt?za™ implies that a™yt'za? =
a'ytiza™ = 0. Further, we have a®ytza™ = a?yt'z — a®ytzaa® = 0. So, a’yt'z = ayt?zaa’.

The condition gt™ = g™t! gives us g — gtt? = 4 — gg?t4. So, we have

g -1t =gt - gt = gza'yt®.
Multiplying the last equation with y on the left side and with z on the right side, we obtain ygz — yt'z =
ygza'yt'z. So, ygz — ytz = ygza'yt'zaa® and we have ygza™ — yt'za™ = ygzayt'zaaa™ = 0. It holds

ygza™ = yt'za™.

Analogously, a™yt'za® = 0implies yt'za® = a%ayt?za’. The condition t"g = tg™ implies g—t? = t*(t—g")g =
tizalyg, so we get a"ygz — a™yt'z = a"a®ayt'za®ygz = 0. O
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Under assumption that the first three conditions in the Theorem 2.8 hold, by Lemma 2.9, we have the
following equivalence:

ba" € AM & (a + yt'z)a™ € AM.

So, the fourth condition in Theorem 2.8 can be replaced by (a + ytiz)a™ € AM!. Analogously, it can be also
replaced by a™(a + yt'z) € AL

Lemma 2.10. Let a,g,y,z € A such that a,g € A and t = g7 + za'y such that t € A% If yt'za’ — a’yt'z = a’a,
then a™ytiza? = ayt?za™ = 0.

Proof. We have a™ytza® = a™(a%a + a®yt'z) = 0 and a’yt'za™ = (yt'za® — aa’)a™ = 0. O
Using the Lemma 2.10, the following corollary of Theorem 2.8 holds.
Corollary 2.11. Leta,g,y,z € Asuch thata,g € A’ and b = a + ygz, t = g* + za'y such that t € AL, If
gt™ = g™, t"g = t1g", yt'za® —a’yt’z = 1 -a", ba™ € AT

then b € A4 and
b =a - a'ytiza’.
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