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Abstract. In this article, we investigate the generalization of Sherman-Morrison-Woodbury formula for
the generalized Drazin inverse for elements in Banach algebra.

1. Introduction and Preliminaries

Let A be a complex unital Banach algebra with unit 1. The sets of all invertible, nilpotent and quasi-
nilpotent elements (σ(a) = {0}) ofAwill be denoted byA−1,Anil andAqnil, respectively.

The generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse of a) is the element b ∈ A which
satisfies

bab = b, ab = ba, a − a2b ∈ Aqnil.

If the generalized Drazin inverse of a exists, it is unique and denoted by ad. Then, we say that the element
a is generalized Drazin invertible. The set of all generalized Drazin invertible elements ofA is denoted by
A

d.
The Drazin inverse is a special case of the generalized Drazin inverse for which it holds a − a2b ∈ Anil

instead of a − a2b ∈ Aqnil, i.e. the Drazin inverse of a is the element b which satisfies bab = b, ab = ba and
ak+1b = ak, for some nonnegative integer k. The least such k is called the Drazin index of a and it is denoted
by i(a). The Drazin inverse of a is denoted by aD. Obviously, if a is Drazin invertible, then it is generalized
Drazin invertible.

The group inverse is the Drazin inverse for which the condition a − a2b ∈ Anil is replaced with a = aba,
i.e. i(a) = 1. We use a# to denote the group inverse of a, and we use A# and AD to denote the sets of all
group invertible and Drazin invertible elements ofA, respectively.

Recall that a ∈ A is generalized Drazin invertible if and only if there exists an idempotent p = p2
∈ A

such that
ap = pa ∈ Aqnil, a + p ∈ A−1.

Then p = 1− aad is the spectral idempotent of a corresponding to the set {0}, and it will be denoted by aπ. The
generalized Drazin inverse ad double commutes with a, that is, ax = xa implies adx = xad.
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We use the following lemma.

Lemma 1.1. [1, Lemma 2.4] Let p, q ∈ Aqnil and let pq = 0. Then p + q ∈ Aqnil.

Sherman and Morrison [4] and Woodbury [5] discovered the formula for the inverse of matrices. The
original Sherman-Morrison-Woodbury (for short SMW) stands

(A + YGZ∗)−1 = A−1
− A−1Y(G−1 + Z∗A−1Y)−1Z∗A−1,

where A, G, Y, and Z are matrices of the appropriate size such that A, G and G−1 + Z∗A−1Y are invertible.

The SMW formula is also valid for the elements of Banach algebra. The following theorem proves it.

Theorem 1.2. Let a, 1, y, z ∈ A such that a, 1 ∈ A−1 and let 1−1+ za−1y be also invertible. Then a+ y1z is invertible
and

(a + y1z)−1 = a−1
− a−1y(1−1 + za−1y)−1za−1. (1)

Proof. Let b = a + y1z and t = 1−1 + za−1y. Note that za−1y = t − 1−1. If the right hand side of (1) is denoted
by m, we obtain

bm = (a + y1z)(a−1
− a−1yt−1za−1)

= aa−1
− aa−1yt−1za−1 + y1za−1

− y1za−1yt−1za−1

= 1 − yt−1za−1 + y1za−1
− y1(t − 1−1)t−1za−1

= 1 − yt−1za−1 + y1za−1
− y1tt−1za−1 + y11−1t−1za−1

= 1

Analogously,

mb = (a−1
− a−1yt−1za−1)(a + y1z)

= 1 + a−1y1z − a−1yt−1z − a−1yt−1za−1y1z
= 1 + a−1y1z − a−1yt−1z − a−1yt−1(t − 1−1)1z
= 1

Now, we can conclude that b is invertible and it’s inverse is m. So, we proved that (1) holds.

In this paper, we will consider the generalized case of SMW formula. We will generalize the SMW
formula to the cases when a and a + y1z are not invertible, but generalized Drazin invertible.

2. Results

The first result is the generalization of the Theorem 2.3 [2], which is proved for the operators on the
Hilbert space. We will generalize the SMW formula for the elements of Banach algebra. The generalization
is up to the case of generalized Drazin inverse.

Theorem 2.1. Let a, 1 ∈ Ad, y, z ∈ A and b = a + y1z, t = 1d + zady such that b, t ∈ Ad.
If

bπad = 0, bdaπ = 0, y1π = 0, 1tπ = 0,

then

(a + y1z)d = ad
− ady(1d + zady)dzad. (2)
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Proof. The condition bπad = 0 gives us bdbad = ad. Analogously, from the other three conditions, we obtain
bdaad = bd, y11d = y and 1ttd = 1. Using these equations, we get

bdy1t = bdy1(1d + zady) = bdy11d + bdy1zady

= bdy + bd(b − a)ady = bdy + bdbady − bdaady

= bdy + ady − bdy = ady,

and then

bdy1 = bdy1ttd = adytd.

Now, we can conclude

bd = bdaad = bd(b − y1z)ad = bdbad
− bdy1zad = ad

− adytdzad.

The theorem has been proved.

Analogously to the Theorem 2.1, we can prove the following theorem.

Theorem 2.2. Let a, 1 ∈ Ad, y, z ∈ A and b = a + y1z, t = 1d + zady such that b, t ∈ Ad.
If

adbπ = 0, aπbd = 0, 1πz = 0, tπ1 = 0,

then

(a + y1z)d = ad
− ady(1d + zady)dzad. (3)

Proof. The conditions adbπ = 0, aπbd = 0, 1πz = 0, tπ1 = 0, imply the equations bd = adabd, ad = adbbd, z = 11dz
and 1 = tdt1. Using these equations, we get

t1zbd = (1d + zady)1zbd = 1d1zbd + zady1zbd

= zbd + zad(b − a)bd = zbd + zadbbd
− zadabd

= zbd + zad
− zbd = zad,

and then

1zbd = tdt1zbd = tdzad.

Now, we have

bd = adabd = ad(b − y1z)bd = adbbd
− ady1zbd = ad

− adytdzad.

The theorem has been proved.

The next theorem is the generalization of the Theorem 2.1 [3] which is proved for the modified matrices.
We will prove the following result for the elements of Banach algebra and generalize the SMW formula to
the case of generalized Drazin inverse.

Theorem 2.3. Let a, 1 ∈ Ad, y, z ∈ A, b = a + y1z, t = 1d + zady, t ∈ Ad and

aπy = 0, y1π = 0, 1πz = 0, ytπ = 0, tπz = 0.

Then b ∈ Ad and

bd = (ad
− adytdzad)

1 + +∞∑
n=0

(ad
− adytdzad)nadytdzanaπ

 . (4)
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Proof. Denote with m = ad
− adytdzad and with s =

+∞∑
n=0

(ad
− adytdzad)nadytdzanaπ. Also, let D be the right-hand

side of the equation (6). So, D = m(1 + s).
Since adaπ = aπad = 0, we have sad = 0 and s2 = 0. Also, it holds aadm = adaad

− adaadytdzad = m = mada,
which implies

aads = aad
+∞∑
n=0

mnadytdzanaπ = aadadytdzaπ +
+∞∑
n=1

aadmnadytdzanaπ = s.

Since the conditions aπy = 0, tπz = 0 and y1π = 0 imply, respectively, the equations y = aady, z = ttdz
and y = y11d, we have

bD = bm(1 + s) = (bad
− badytdzad)(1 + s)

= (aad + y1zad
− aadytdzad

− y1zadytdzad)(1 + s)

= (aad + y1zad
− ytdzad

− y1(t − 1d)tdzad)(1 + s)

= (aad + y1zad
− ytdzad

− y1ttdzad + y11dtdzad)(1 + s)

= (aad + y1zad
− ytdzad

− y1zad + ytdzad)(1 + s)

= aad(1 + s) = aad + s.

Analoguosly, the conditions ytπ = 0 and 1πz = 0 imply, respectively, the equations y = ytdt and z = 11dz.
Since aπb = aπ(a + y1z) = aπa, we have

Db = mb +msb = (ad
− adytdzad)(a + y1z) +

+∞∑
n=0

mn+1adytdzanaπb

= ada + ady1z − adytdzada − adytdzady1z +
+∞∑
n=0

mn+1adytdzan+1aπ

= ada + ady1z − adytdzada − adytd(t − 1d)1z +
+∞∑
n=1

mnadytdzanaπ

= ada + ady1z − adytdzada − adytdt1z + adytd1d1z + s − adytdzaπ

= ada + ady1z − adytdz(aad + aπ) − ady1z + adytdz + s

= ada + s.

Since a and ad commute, we have bD = Db.

Further, we have

DbD = m(1 + s)(aad + s) = maad +ms +msaad +ms2 = m +ms = D.

Finally, since we already calculate that bm = aad, we have

b − b2D = b − b(aad + s) = baπ − bs

= baπ − b

adytdzaπ +
+∞∑
n=1

mnadytdzanaπ


= baπ − (a + y1z)adytdzaπ − bm
+∞∑
n=1

mn−1adytdzanaπ

= baπ − aadytdzaπ − y1zadytdzaπ − aadsa

= baπ − ytdzaπ − y1(t − 1d)tdzaπ − sa
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= baπ − ytdzaπ − y1ttdzaπ + y11dtdzaπ − sa

= baπ − ytdzaπ − y1zaπ + ytdzaπ − sa
= baπ − y1zaπ − sa
= aaπ − sa

Since aπad = 0 and aπm = 0, we get

(sa)2 =

 +∞∑
n=0

mnadytdzan+1aπ

 +∞∑

n=0

mnadytdzan+1aπ
 = 0,

which implies that sa is the nilpotent element, so it is also the quasi-nilpotent element.
Now, we have aaπ, sa ∈ Aqnil and

aaπsa = asa − a2adsa = asa − asa = 0,

so, we can apply the Lemma 1.1 and we get that b − b2D = aaπ − sa ∈ Aqnil.

We have proved that D ∈ A is such that bD = Db, DbD = D and b − b2D ∈ Aqnil. Thus, D is generalized
Drazin inverse of b.

As a corollary of the Theorem 2.3, we will prove the following result. The obtained result in the next
corollary generalize the Theorem 2.4 [2] proved for the operators on Hilbert space.

Corollary 2.4. Let a, 1 ∈ Ad, y, z ∈ A, b = a + y1z, t = 1d + zady, t ∈ Ad and

aπy = 0, zaπ = 0, y1π = 0, 1πz = 0, ytπ = 0, tπz = 0.

Then b ∈ Ad and

bd = ad
− adytdzad.

Proof. The conditions from the Theorem 2.3 are satisfied, so we have the equation

bd = (ad
− adytdzad)

1 + +∞∑
n=0

(ad
− adytdzad)nadytdzanaπ

 . (5)

Since zaπ = 0, we have
+∞∑
n=0

(ad
− adytdzad)nadytdzanaπ = 0 and bd = ad

− adytdzad.

Further, as the corollary of the Theorem 2.3, we can get the formula for the generalized Drazin inverse
for the sum of elements in Banach algebra. We will apply Theorem 2.3 in the case when 1 = 1, z = 1 and
when the element 1 + ady is invertible.

Corollary 2.5. Let a ∈ Ad, y ∈ A, t = 1 + ady ∈ A−1 and aπy = 0. Then a + y ∈ Ad and

(a + y)d = t−1ad

1 − t−1
+∞∑
n=0

(adt−1)nanaπ
 . (6)
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Proof. Since the conditions of the Theorem 2.3 are satisfied, we get that a+ y is generalized Drazin invertible
and it holds

(a + y)d = (ad
− adyt−1ad)

1 + +∞∑
n=0

(ad
− adyt−1ad)nadyt−1anaπ


= (ad

− (t − 1)t−1ad)

1 + +∞∑
n=0

(ad
− (t − 1)t−1ad)n(t − 1)t−1anaπ


= (ad

− ad + t−1ad)

1 + +∞∑
n=0

(t−1ad)n(t − 1)t−1anaπ


= t−1ad

1 + +∞∑
n=0

(t−1ad)nanaπ −
+∞∑
n=0

(t−1ad)nt−1anaπ


= t−1ad

1 + aπ +
+∞∑
n=1

(t−1ad)naπan
− t−1aπ −

+∞∑
n=1

(t−1ad)nt−1anaπ


= t−1ad

1 + aπ − t−1aπ −
+∞∑
n=1

t−1(adt−1)nanaπ


= t−1ad

1 + aπ −
+∞∑
n=0

t−1(adt−1)nanaπ


= t−1ad

1 − t−1
+∞∑
n=0

(adt−1)nanaπ
 .

Analogously to the proof of the Theorem 2.3, we have proved the following result.

Theorem 2.6. Let a, 1 ∈ Ad, y, z ∈ A, b = a + y1z, t = 1d + zady, t ∈ Ad and

zaπ = 0, y1π = 0, 1πz = 0, ytπ = 0, tπz = 0.

Then b ∈ Ad and

bd =

1 + +∞∑
n=0

aπanytdzad(ad
− adytdzad)n

 (ad
− adytdzad). (7)

Proof. The proof of this theorem is similar to the proof of the Theorem 2.3. Because of that, we will write
only the results after calculations. Denote the right-hand side of the equation (7) with D. So, we have

Db = bD = aad +

+∞∑
n=0

aπanytdzad(ad
− adytdzad)n,

DbD = D,

b − b2D = aaπ − a

 +∞∑
n=0

aπanytdzad(ad
− adytdzad)n

 ∈ Aqnil.

As a corollary of the previous Theorem 2.6, we can get the formula for the generalized Drazin inverse
for the sum a + z under conditions that zaπ = 0, a ∈ Ad and 1 + zad

∈ A
−1.
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Corollary 2.7. Let a ∈ Ad, z ∈ A, t = 1 + zad
∈ A

−1 and zaπ = 0. Then a + z ∈ Ad and

(a + z)d =

1 − aπ
+∞∑
n=0

an(t−1ad)nt−1

 adt−1. (8)

Proof. Notice that zad = t − 1, so it holds ad
− adt−1zad = ad

− adt−1(t − 1) = adt−1. Now, appling the Theorem
2.6 to the elements a, z, y = 1, 1 = 1, we have

(a + z)d =

1 + +∞∑
n=0

aπant−1zad(ad
− adt−1zad)n

 (ad
− adt−1zad)

=

1 + +∞∑
n=0

aπant−1zad(adt−1)n

 adt−1

=

1 + aπt−1zad +

+∞∑
n=1

aπant−1zad(adt−1)n

 adt−1

=

1 + aπt−1(t − 1) +
+∞∑
n=1

aπant−1(t − 1)(adt−1)n

 adt−1

=

1 + aπ − aπt−1 +

+∞∑
n=1

aπan(adt−1)n
−

+∞∑
n=1

aπant−1(adt−1)n

 adt−1

=

1 + aπ − aπt−1
− aπ

+∞∑
n=1

an(t−1ad)nt−1

 adt−1

=

1 − aπ
+∞∑
n=0

an(t−1ad)nt−1

 adt−1

The next theorem generalize SMW formula and holds under some new conditions.

Theorem 2.8. Let a, 1, y, z ∈ A such that a, 1 ∈ Ad and b = a + y1z, t = 1d + zady such that t ∈ Ad. If

1tπ = 1πtd, tπ1 = td1π, aπytdzad = adytdzaπ, baπ ∈ Aqnil,

then b ∈ Ad and
bd = ad

− adytdzad.

Proof. Let m = ad
− adytdzad. Using the conditions 1tπ = 1πtd and tπ1 = td1π, we have

bm = aad + y1zad
− aadytdzad

− y1zadytdzad

= aad + y1zad
− (1 − aπ)ytdzad

− y1(t − 1d)tdzad

= aad + y1zad
− (1 − aπ)ytdzad

− y1ttdzad + y11dtdzad

= aad + y1zad
− ytdzad + aπytdzad

− y1(1 − tπ)zad + y(1 − 1π)tdzad

= aad + y1zad
− ytdzad + aπytdzad

− y1zad + y1tπzad + ytdzad
− y1πtdzad

= aad + aπytdzad + y(1tπ − 1πtd)zad

= aad + aπytdzad (9)
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and

mb = ada + ady1z − adytdzada − adytdzady1z

= ada + ady1z − adytdz(1 − aπ) − adytd(t − 1d)1z

= ada + ady1z − adytdz(1 − aπ) − adytdt1z + adytd1d1z

= ada + ady1z − adytdz + adytdzaπ − ady(1 − tπ)1z + adytd(1 − 1π)z

= ada + ady1z − adytdz + adytdzaπ − ady1z + adytπ1z + adytdz − adytd1πz

= ada + adytdzaπ + ady(tπ1 − td1π)z

= ada + adytdzaπ. (10)

Since aπytdzad = adytdzaπ, we can conclude that bm = mb.

Notice that the condition aπytdzad = adytdzaπ and the fact that aπ is idempotent imply

aπytdzad = aπaπytdzad = aπadytdzaπ = 0,

so it holds aπytdzad = adytdzaπ = 0 and we have bm = mb = aad.

Further, we have

mbm = adaad
− adytdzadaad = m

Finally,

b − b2m = a + y1z − a2ad
− y1zaad

= aaπ + y1zaπ

= baπ ∈ Aqnil.

From all proved above, we have that b ∈ Ad and bd = m = ad
− adytdzad.

Since b − b2m = b −mb2 = (1 −mb)b = aπb, the condition baπ ∈ Aqnil in the Theorem 2.8 can be replaced
by aπb ∈ Aqnil.

Lemma 2.9. Let a, 1, y, z ∈ A such that a, 1 ∈ Ad and t = 1d + zady such that t ∈ Ad. If 1tπ = 1πtd, tπ1 = td1π and
aπytdzad = adytdzaπ, then y1zaπ = ytdzaπ and aπy1z = aπytdz.

Proof. As we have proved in the Theorem 2.8, the equation aπytdzad = adytdzaπ implies that aπytdzad =
adytdzaπ = 0. Further, we have adytdzaπ = adytdz − adytdzaad = 0. So, adytdz = adytdzaad.

The condition 1tπ = 1πtd gives us 1 − 1ttd = td
− 11dtd. So, we have

1 − td = 1(t − 1d)td = 1zadytd.

Multiplying the last equation with y on the left side and with z on the right side, we obtain y1z − ytdz =
y1zadytdz. So, y1z − ytdz = y1zadytdzaad and we have y1zaπ − ytdzaπ = y1zadytdzaadaπ = 0. It holds
y1zaπ = ytdzaπ.

Analogously, aπytdzad = 0 implies ytdzad = adaytdzad. The condition tπ1 = td1π implies 1−td = td(t−1d)1 =
tdzady1, so we get aπy1z − aπytdz = aπadaytdzady1z = 0.
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Under assumption that the first three conditions in the Theorem 2.8 hold, by Lemma 2.9, we have the
following equivalence:

baπ ∈ Aqnil
⇔ (a + ytdz)aπ ∈ Aqnil.

So, the fourth condition in Theorem 2.8 can be replaced by (a + ytdz)aπ ∈ Aqnil. Analogously, it can be also
replaced by aπ(a + ytdz) ∈ Aqnil.

Lemma 2.10. Let a, 1, y, z ∈ A such that a, 1 ∈ Ad and t = 1d + zady such that t ∈ Ad. If ytdzad
− adytdz = ada,

then aπytdzad = adytdzaπ = 0.

Proof. We have aπytdzad = aπ(ada + adytdz) = 0 and adytdzaπ = (ytdzad
− aad)aπ = 0.

Using the Lemma 2.10, the following corollary of Theorem 2.8 holds.

Corollary 2.11. Let a, 1, y, z ∈ A such that a, 1 ∈ Ad and b = a + y1z, t = 1d + zady such that t ∈ Ad. If

1tπ = 1πtd, tπ1 = td1π, ytdzad
− adytdz = 1 − aπ, baπ ∈ Aqnil,

then b ∈ Ad and
bd = ad

− adytdzad.
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