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Viqar Azam Khana, Mohammad Shuaiba

aDepartment of Mathematics, Aligarh Muslim University, Aligarh

Abstract. In the present article, we have investigated pointwise pseudo-slant submanifolds of Kenmotsu
manifolds and have sought conditions under which these submanifolds are warped products. To this
end first, it is shown that these submanifolds can not be expressed as non-trivial doubly warped product
submanifolds. However, as there exist non-trivial (single) warped product submanifolds of a Kenmotsu
manifold, we have worked out characterizations in terms of a canonical structure T and the shape operator
under which a pointwise pseudo slant submanifold of a Kenmotsu manifold reduces to a warped product
submanifold.

1. Introducion

Slant immersions in complex geometry were defined by B.Y.Chen [6] as a natural generalization to
both holomorphic and totally real immersions . The notion was further generalized by him in [9] when
he considered pointwise slant submanifolds in almost Hermitian manifolds. In [16], A.Lotta extended the
notion to the settings of almost contact metric manifold and obtained some important properties of such
immersions.

There are two important classes of submanifolds in Kaehlerian as well as in contact settings, the
first one is the class of submanifolds which admit an invariant distribution and the other one consists of
submanifolds which admit an anti-invariant distribution. If the complementary distribution is slant, the
submanifolds of class one are semi-slant submanifolds whereas submanifolds of the other class are pseudo-
slant submanifolds. J.L. Cabrerizo et al [3] defined and studied semi-slant submanifolds in the setting of
almost contact metric manifolds whose study in almost Hermitian manifolds was initiated by N.Papaghiuc
[18]. Recently, K.S.Park [19] studied pointwise slant and pointwise semi-slant submanifolds of almost
contact metric manifolds. He obtained some geometrically important properties of these manifolds. Now,
it is natural seek differential geometric properties of pseudo-slant or more generally pointwise pseudo-
slant submanifolds of almost contact metric manifolds. Since, proper slant distribution is not integrable
on a submanifold of a Sasakian manifold, we aim to investigate pseudo-slant submanifolds of a Kenmotsu
manifold.The paper is organised as follows:

Section 2 deals with basic concepts, formulas and some known result that are relevant for the subsequent
sections. In section 3, point wise pseudo-slant submanifolds of a Kenmotsu manifold are studied. Some
formulas are derived that helped in obtaining integrability conditions for the distributions on a pseudo-slant
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submanifold of Kenmotsu manifold and revealing the geometry of the leaves of the distributions. Section
4 is devoted to study doubly warped product submanifolds of a Kenmotsu manifold. After going through
various properties, we established that non-trivial doubly warped products are non-existent in a Kenmotsu
manifold. This leads us to take up single warped product submanifolds of Kenmotsu manifolds. Along
the years, there has been interests to find analogous of classical deRahm’s Theorem to warped products,
we have considered in section 5 warped product submanifolds of a Kenmotsu manifold M̄ whose one of
the factors is a φ− anti-invariant submanifold of M̄. We worked out formulas for ∇T. Since point wise
pseudo slant submanifolds are a special case of these submanifolds, these formulas are used to obtain
characterizations under which a pointwise pseudo slant submanifold is a warped product submanifold.

2. Preliminaries

All manifolds, vector bundles, functions etc. are assumed to be of class C∞. The set of locally defined
sections of a vector bundle E is denoted by Γ(E).

An almost contact structure on a (2n + 1)-dimensional manifold M̄ is defined by a (1, 1) tensor field φ, a
vector field ξ and the dual 1-form η of ξ satisfying the following properties

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1.

There always exist a Riemannian metric 1 on M̄ satisfying the following compatibility condition

1(φU, φV) = 1(U,V) − η(U)η(V) (1)

for any vector fields U,V on M̄. An almost contact manifold endowed with a compatible Riemannian metric
is called an almost contact metric manifold. It is easy to observe that the Riemannian metric defined in (1)
satisfies

1(φU,V) + 1(U, φV) = 0, 1(U, ξ) = η(U). (2)

If ∇̄ is the Levi-Civita connection on (M̄, 1), then the covariant derivative of φ is defined as

(∇̄Uφ)V = ∇̄UφV − φ∇̄UV. (3)

Let Ω be the fundamental 2-form on M̄, i.e, Ω(U,V) = 1(U, φV). If Ω = dη, M̄ is said to be a contact
manifold. If ξ is a Killing vector field with respect to 1, the contact metric structure is called a K-contact
structure. It is easy to show that a contact metric manifold is K-contact if ∇̄Uξ = −φU for each vector field
U on M̄. The almost contact structure on M̄ is said to be normal if [φ,φ] + 2dη ⊗ ξ = 0 where [φ,φ] is the
Nijenhuis tensor of φ. A Sasakian manifold is a normal contact metric manifold. It is known that an almost
contact metric manifold is a Sasakian manifold if and only if

(∇̄Uφ)V = 1(U,V)ξ − η(V)U.

S.Tanno [20] classified connected almost contact metric manifolds whose automorphism groups posses
the maximum dimension. For such a manifold, the sectional curvature of a plane section containing ξ is a
constant c. One of the classes of this classification consists of warped product R × f C

n with c < 0. These
manifolds are not Sasakian and are characterized by a tensorial equation :

(∇̄Uφ)V = 1(φU,V)ξ − η(V)φU. (4)

Kenmotsu [15] explored some fundamental differential geometric properties of these spaces and therefore
they are named as Kenmotsu manifolds.

It can also be seen that on a Kenmotsu manifold M̄,

∇̄Uξ = −φ2U = U − η(U)ξ (5)
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for all vector fields U,V on M̄.
Throughout, we denote by M a submanifold of an almost contact metric manifold M̄ with TM and T⊥M

as the tangent and normal bundles on M respectively. If ∇ and ∇⊥ are the induced Riemannian connections
on TM and T⊥M then Gauss and Weingarton formulae are

∇̄UV = ∇UV + h(U,V) (6)

∇̄UN = −ANU + ∇⊥UN (7)

for any U,V ∈ Γ(TM) and N ∈ Γ(T⊥M). AN and h respectively denote the shape operator (corresponding to
the normal vector field N) and the second fundamental form of the immersion of M into M̄. The two are
related as

1(ANU,V) = 1(h(U,V),N), (8)

where 1 denotes the Riemannian metric on M̄ as well as the induced Riemannian metric on M.
If the structure vector field ξ is tangential to the submanifold M of a Kenmotsu manifold M̄, then for

any U ∈ Γ(TM) and N ∈ Γ(T⊥M) by formula (5), (6) and (8)

h(U, ξ) = 0, ANξ = 0 (9)

If ξ is normal to the submanifold, then by (5) and (7), it follows that

Aξ = −Id and ∇⊥Uξ = 0. (10)

For any U ∈ Γ(TM), we write

TU = tan(φU) and FU = nor(φU).

where ′tan′ and ′nor′ are the natural projections associated with the direct decomposition:

TpM̄ = TpM ⊕ T⊥p M, p ∈M.

Similarly, for N ∈ Γ(T⊥M), we write

tN = tan(φN) and f N = nor(φN)

The tensor fields on M determined by the endomorphism T and the normal valued 1-form F are denoted
by the same letters T and F respectively. Similarly, t and f are tangential and normal valued (1,1)-tensor
fields on the normal bundle of M. The covariant differentiations of the tensor fields T and F are defined
respectively as:

(∇̄UT)V = ∇UTV − T∇UV (11)

(∇̄UF)V = ∇⊥UFV − F∇UV. (12)

If ξ is tangential to a submanifold M of a Kenmotsu manifold, then by virtue of Gauss-Weingarten
formulae and (4), we obtain

(∇̄UT)V = AFVU + th(U,V) − η(V)TU + 1(TU,V)ξ (13)

for any U,V ∈ Γ(TM). Taking account of (9) in the above formula, we deduce that

(∇̄ξT)U = 0, and (14)

(∇̄UT)ξ = −TU (15)
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Let D be a differentiable distribution on M. For any p ∈ M and U ∈ Dp, if the vectors U and ξp are
linearly independent then the angle θ(U) ∈ [0, π2 ] between φU and Dp is known as slant angle of U. If θ(U)
does not depend on the choice of p ∈ M and U ∈ Dp, then D is said to be a slant distribution on M (with the
slant angle θ). Usually, a slant distribution with slant angle θ is denoted by Dθ. Invariant and anti-invariant
distributions are slant distributions with slant angle θ = 0 and π

2 respectively [16]. A submanifold M of an
almost contact metric manifold M̄ is said to be slant submanifold if the tangent bundle TM is slant. A slant
submanifold which is neither invariant nor anti-invariant is called a proper slant submanifold. It is easy to
observe that :

Theorem 2.1. [24] Let M̄ be an almost contact metric manifold with dim(M̄) = 2n+1 and M, an (n+1)-dimensional
anti-invariant submanifold of M̄ then ξ is tangent to M.

Conversely if the structure vector field ξ is tangential to a submanifold M of an almost contact metric
manifold M̄, then TM admits the orthogonal direct decomposition

TM = D⊕ < ξ >

where D denotes the distribution orthogonal complementary to the one dimensional distribution generated
by ξ. A submanifold M of an almost contact metric manifold (tangent to ξ) is slant if and only if D is a
slant distribution on M. In particular, D may be φ−invariant or φ−anti invariant distribution accordingly
M is invariant or ant-invariant submanifold of M̄ tangent to ξ. More generally semi-invariant, semi-slant
and pseudo slant submanifolds of almost contact metric manifolds tangential to ξ are studied (cf. [3], [11],
[13],[14], etc.). In the setting of contact metric manifolds, we have

Proposition 2.2. [4] Let M be a submanifold of a contact metric manifold M̄ tangential to the structure vector field
ξ. Then M is anti-invariant if and only if D is involutive.

Proposition 2.3. A proper slant distribution on a submanifold of contact metric manifold tangent to the structure
vector field ξ is not involutive.

With regards to the case when ξ ∈ T⊥M, A.Lotta proved the following which generalise a well known
result of Yano and Kon [24].

Theorem 2.4. [16] Let M be a submanifold of a contact metric manifold M̄. If ξ is orthogonal to M, then M is
anti-invariant.

Corollary 2.5. Proper slant, semi-slant and pseudo-slant submanifolds orthogonal to ξ are non existent in Sasakian
manifolds.

For the existence of slant submanifolds of almost contact metric manifold, we have the following
characterization :

Theorem 2.6. [4] Let M be a submanifold of an almost contact metric manifold tangent to the structure vector field
ξ. Then M is slant if and only if there exits a constant λ ∈ [0, 1] such that

T2 = −λ(I − η ⊗ ξ).

Furthermore, in such case if θ is the slant angle of M, then λ = cos2θ.

If M is a slant submanifold of an almost contact metric manifold M̄ with slant angle θ, then it follows from
the above Theorem that

1(TX,TY) = cos2θ{1(X,Y) − η(X)η(Y)} (16)

1(FX,FY) = sin2θ{1(X,Y) − η(X)η(Y)}. (17)
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B.Y. Chen [9] considered a generalised version of slant submanifolds by defining pointwise slant
submanifolds of almost Hermitian manifolds. K.S. Park [19] extended the notion to the setting of almost
contact metric manifold as follows:

Let M be a submanifold of an almost contact metric manifold and let Mp = {U ∈ TpM/1(U, ξp) = 0}.
Then M is called a pointwise slant submanifold if at each given point p ∈ M, the angle θ = θ(U) between φU
and the space Mp is independent of the choice of U ∈ Mp. In this case the angle θ is called a slant function
on M. If the slant function θ on a pointwise slant submanifold M is non-constant, then M is called a proper
pointwise slant submanifold.

The advantage of defining the subspace Mp is that many of the results on slant distribution have a
simpler version e.g, if we denote by D, the space

⋃
p∈M

Mp i.e. D =
⋃

p∈M
{U ∈ Tp(M)/1(U, ξp) = 0}, then Theorem

2.6 is extended as :

Theorem 2.7. Let M be a submanifold of an almost contact metric manifold M̄. Then M is a pointwise slant
submanifold of M̄ if and only if T2 = −cos2θI on D for some function θ : M→ R

Park obtained some important properties of pointwise slant submanifold of almost contact metric manifold
e.g.,

Proposition 2.8. [19] Any two dimensional submanifold of an almost contact metric manifold is a pointwise slant
submanifold.

Proposition 2.9. [19] A submanifold M of an almost contact metric manifold is a pointwise slant submanifold if and
only if

1(TX,TY) = 0

whenever 1(X,Y) = 0 for X,Y ∈ D.

3. Pointwise Pseudo-slant submanifolds of a Kenmotsu manifold

Let (M̄, φ, ξ, η, 1) be an almost contact metric manifold. A submanifold M of M̄ is called a pointwise pseudo-
slant submanifold if there is a pointwise slant distribution D1 ⊆ TM such that its orthogonal complement D2
is φ-anti invariant. That is

TM = D1 ⊕D2,

where φD2 ⊂ Γ(T⊥M), and at each given point p ∈ M, the angle θ = θ(X) between φX and the space (D1)p
is constant for non zero X ∈ (D1)p.

If the structure vector field ξ is tangential to the submanifold M, then for any U ∈ Γ(TM), we may write

U = BU + CU + η(U)ξ,

where BU ∈ D1 and CU ∈ D2.

Note 3.1. If the structure vector field ξ is tangential to the submanifold M, then it can not lie in D1 as θ(ξp) is
not defined for any p ∈ M. In fact, no part of ξ can be tangential to D1. In this case, φ-anti invariant distribution
orthogonal to D1 is infact D2⊕ < ξ >.

If we denote the dimensions of D1 and D2 by d1 and d2 respectively, then we have the following cases :

(i) If d1 = 0, then M is a φ-anti invariant submanifold of M̄.
(ii) If d2 = 0 and θ = 0, then M is a φ-invariant submanifold of M̄.
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(iii) If d2 = 0 and θ , 0, then M is a proper pointwise slant submanifold with slant angel θ (In this case
TM = D1⊕ < ξ >).

(iv) If d1, d2 , 0 and θ ∈ (0, π2 ), then M is a proper pointwise pseudo-slant submanifold of M̄.

On a pointwise pseudo-slant submanifold, the following relations can be checked easily

T(D1) ⊆ D1, T(D2) = 0, tFY = −sin2θ Y (18)

for each Y ∈ D1.
For any U ∈ Γ(TM̄) we write

U = HU +VU (19)

whereHU ∈ Γ(TM) andVU ∈ Γ(T⊥M). Then

T2 + t f = −I + η ⊗Hξ, FT + f F = η ⊗Vξ (20)

Tt + t f = η ⊗Hξ, FT + f 2 = −I + η ⊗Vξ. (21)

The normal bundle of a pointwise pseudo-slant submanifold of an almost contact metric manifold
admits the following orthogonal direct decomposition

T⊥M = FD1 ⊕ FD2 ⊕ µ (22)

where µ is the orthogonal complement of φ(TM) in T⊥M.
Now, For any U1 ∈ D1 and U2 ∈ D2,

1(FU1,FU2) = 1(φU1, φU2) = 1(U1,U2) = 0.

That means FD1 and FD2 are orthogonal to each other.

Proposition 3.2. Let M be a pointwise pseudo-slant submanifold of an almost contact metric manifold. Then µ is a
φ-invariant normal sub bundle if and only if either µ ⊆ ker(η) or D2 ⊆ ker(η).

Proof. For any N ∈ Γ(µ) and U ∈ Γ(TM),

1(φN,U) = 0 as 1(N,FBU) = 0 = 1(N, φCU).

That shows that

φµ ⊆ T⊥M. (23)

Further, for X ∈ Γ(D1),

1(φN,FX) = 1(φN, φX) = 1(N,X) − η(N)η(X) = 0, (24)

That is, φµ is orthogonal to FD1. Now, for Z ∈ Γ(D2),

1(φN, φZ) =1(N,Z) − η(N)η(Z)
= − η(N)η(Z).

(25)

That is, 1(φN, φZ) = 0 if and only if η(N)η(Z) = 0 The assertion follows from (23), (24) and (25).

Proposition 3.3. Let M be a pointwise pseudo-slant submanifold of a Kenmotsu manifold, then

(i) AφZW = AφWZ
(ii) 1(∇⊥XFY, φZ) = sin2θ {1(∇XY,Z) + η(Z)1(X,Y)} − 1(h(X,Z),FTY)
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(iii) 1(∇⊥ZφW,FX) = sin2θ1(∇ZW,X) + 1(h(Z,W),FTX)

for each X,Y ∈ Γ(D1) and Z,W ∈ Γ(D2) .

Proof. Consider 1(AφZW,U) for any U ∈ Γ(TM),

1(AφZW,U) =1(h(U,W), φZ)
=1(∇̄UW, φZ)
= − 1(φ∇̄UW,Z).

Now, as 1((∇̄Uφ)W,Z) = 0 by virtue of formula (4) and the fact that 1(φU,Z) = 0, the right hand side of the
above equation on using (3), reduces to -1(∇̄UφW,Z), which oin view of Weingarten formula is same as:
1(AφWZ,U). This prves that AφZW = AφWZ.

By using (2) and (3), we have

1(∇⊥XFY, φZ) =1(∇̄XFY, φZ)
=1((∇̄Xφ)FY,Z) − 1(∇̄XφFY,Z)

Writing φFY = tFY + f FY and making use of (4) and (17), the right hand side of the above equation reduces
to

η(Z)sin2θ1(X,Y) − 1(∇XtFY,Z) − 1(∇̄X f FY,Z)

which on making use of (18),(20),(7) and (8) takes the form

η(Z)sin2θ1(X,Y) + sin2θ X(θ)1(Y,Z) + sin2θ1(∇XY,Z) − 1(h(X,Z),FTY).

As 1(Y,Z) = 0, we obtain that

1(∇⊥XFY, φZ) = sin2 θ(1(∇XY,Z) + η(Z)1(X,Y)) − 1(h(X,Z),FTY).

This proves the second part. For the third part, as FD1 and FD2 are orthogonal, we have

1(∇̄ZφW,FX) = −1(φW, ∇̄ZFX) = 1(W, φ∇̄ZFX)
= 1(W, ∇̄ZφFX) − 1(W, (∇̄Zφ)FX)

The second term in the right hand side of the above equation is zero by virtue of (4), whereas the first term
is written as 1(W, ∇̄ZtFX) + 1(W, ∇̄Z f FX). Therefore, the equation takes the from :

1(∇̄ZφW,FX) = 1(W, ∇̄Z − sin2θX) − 1(W, ∇̄ZFTX)

= −sin2θ Z(θ)1(W,X) − sin2θ1(W,∇ZX) + 1(AFTXZ,W)

= sin2θ 1(∇ZW,X) + 1(h(Z,W),FTX).

This proves the third part and the proposition completely.

Theorem 3.4. Let M be a proper pointwise pseudo-slant submanifold of a Kenmotsu manifold M̄. Then the distribu-
tion D1 is involutive on M if and only if

1(AFZX,TY) − 1(AFZTX,Y) = 1(AFTYX,Z) − 1(AFTXY,Z)

for X,Y ∈ Γ(D1) and Z ∈ Γ(D2).
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Proof. By virtue of (5) and the fact that η(X) = 0, we have

1(∇XY, ξ) = η(∇XY) = − 1(Y,∇Xξ)
= − 1(X,Y).

Therefore,

1([X,Y], ξ) = 0.

Further for any Z ∈ Γ(D2),

1(∇XY,Z) = 1(φ∇̄XY, φZ) + η(∇̄XY)η(Z).

By formula (4), 1((∇̄Xφ)Y, φZ) = 0 and η(∇XY) = −1(X,Y). Taking account of these observations while
using (3), the above equation takes the form :

1(∇XY,Z) =1(∇̄XφY, φZ) − η(Z)1(X,Y)
=1(∇̄XTY, φZ) + 1(∇̄XFY, φZ) − η(Z)1(X,Y).

Making use of Gauss formula and Proposition3.3 in the above equation, we obtain

cos2θ 1(∇XY,Z) = 1(AφZX,TY) − 1(AFTYX,Z) − cos2θ η(Z)1(X,Y).

Interchanging X and Y and subtracting the obtained equation from the above, we get

cos2θ 1([X,Y],Z) = 1(AφZX,TY) − 1(AφZTX,Y)
+ 1(AFTXY,Z) − 1(AFTYX,Z).

Since M is proper pointwise pseudo-slant, D1 is involutive if and only if

1(AφZX,TY) − 1(AφZTX,Y) = 1(AFTYX,Z) − 1(AFTXY,Z).

This proves the Theorem.

Proposition 3.5. Let M be a proper pointwise pseudo-slant submanifold of a Kenmotsu M̄ such that ξ is tangential
to the submanifold M. Then

1(∇ξTX,Z) = 0

for any X ∈ Γ(D1) and Z ∈ Γ(D2).

Proof.

1(∇ξTX,Z) = 1(∇̄ξTX,Z) =1(∇̄ξφX,Z) − 1(∇̄ξFX,Z)
=1((∇̄ξφ) X,Z) − 1(∇̄ξX, φZ) + 1(AFXξ,Z).

The right hand side is identically zero by virtue of (4),(6),(8) and (9). This proves the proposition.

Lemma 3.6. Let M be a proper pointwise pseudo-slant submanifold of a Kenmotsu manifold M̄ tangent to the
structure vector field ξ. Then [Z, ξ] ∈ Γ(D2) for any Z ∈ Γ(D2).
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Proof. For X ∈ Γ(D1), we have

1([Z, ξ],TX) = 1(∇̄Zξ,TX) − 1(∇̄ξZ,TX).

The first term in the right hand side of the above equation is zero by virtue of (5) whereas the second term
on using the fact that D1 and D2 are orthogonal complementary, reduces to 1(∇̄ξTX,Z) which is zero in view
of proposition 3.5. Hence

1([Z, ξ],TX) = 0

This proves the Lemma.

Lemma 3.7. Let M be a pointwise pseudo-slant submanifold of a Kenmotsu manifold M̄. Then

1(∇ZW,X) = sec2θ{1(h(Z,W),FTX) − 1(h(TX,Z),FW) (26)

for each X ∈ D1 and Z,W ∈ D2.

Proof. .

1(∇ZW,X) = 1(∇̄ZW,X) = 1(φ∇̄ZW, φX) + η(∇̄ZW)η(X)
= 1(φ∇̄ZW, φX)
= 1(∇̄ZφW, φX) − 1((∇̄Zφ)W, φX)
= 1(∇̄ZφW,TX) + 1(∇̄ZφW,FX)
− 1(φZ,W)η(φX) + η(W)1(φZ, φX)

= −1(AφWZ,TX) + 1(∇̄ZφW,FX)

substituting from part (iii) of proposition 3.3, the above equation reduces to

cos2θ 1(∇ZW,X) = 1(h(Z,W),FTX) − 1(AφWZ,TX)

That proves the lemma.

As an immediate consequence of the above lemma and proposition 3.3 part (i), we have

1([Z,W],X) = 0 (27)

Further it is easy to show that

1(∇ZW, ξ) = Zη(W) + η(Z)η(W) − 1(Z,W).

Hence,

1([Z,W], ξ) = Zη(W) −Wη(Z). (28)

If ξ is normal to the submanifold M, then from (27) and (28), we deduce that D2 is involutive on M. However,
if ξ ∈ TM, then the integrability of the distribution D2⊕ < ξ > follows from (27) and ( 28). Thus, we have

Theorem 3.8. Let M̄ be a Kenmotsu manifold and M a proper pointwise pseudo-slant submanifold of M̄. Then D2
as well as D2⊕ < ξ > are involutive on M.

As a consequence of formula (26),we have

Corollary 3.9. Let M be a pointwise pseudo-slant submanifold of a Kenmotsu manifold M̄. Then the anti-invariant
distribution defines a totally geodesic foliation on M if and only if

1(h(Z,X), φW) = 1(h(Z,W),FX)

for any X ∈ Γ(D1) and Z,W ∈ Γ(D2⊕ < ξ >).



V. A. Khan, M. Shuaib / Filomat 31:18 (2017), 5833–5853 5842

4. Doubly warped product submanifolds of a Kenmotsu manifold

Our aim in this section is to study submanifolds of a Kenmotsu manifold which are doubly warped
products. That is, doubly warped product manifolds isometrically immersed in a Kenmotsu manifold. On
analysing these submanifolds, we deduce that non-trivial doubly warped products are non-existent in a
Kenmotsu manifold. In fact, it is shown that pseudo-slant submanifolds of Kenmotsu manifolds can be
realized only as single warped product submanifolds.

Let (N1, 11) and (N2, 12) be Riemannian manifolds and let f1 : N1 → (0,∞) and f2 : N2 → (0,∞) be
smooth functions. The doubly warped product M = f2 N1 × f1 N2 is the product manifold N1 × N2 endowed
with the metric 1 = f 2

2 11 + f 2
1 12. More precisely, if π : N1 × N2 → N1 and τ : N1 × N2 → N2 are natural

projections, the metric 1 is defined by

1 = ( f2 ◦ τ)2π∗11 + ( f1 ◦ π)2τ∗12. (29)

The functions f1 and f2 are called warping functions.
If either f1 = 1 or f2 = 1 but not both, then we obtain a (single) warped product. If both f1 = 1 = f2,

we have a Riemannian product N1 × N2, usually we call it a trivial warped product. If neither f1 nor f2 is
constant, we have a non-trivial doubly warped product.

If ∇
′

and ∇
′′

are the Levi-Civita connections of the Riemannian metric 11 and 12 respectively, then the
Levi-Civita connection ∇ of the doubly warped product metric 1 on M is expressed as :

∇U1 V1 = ∇
′

U1
V1 −

f 2
2

f 2
1

11(U1,V1)∇
′′

(ln f2), (30)

∇U2 V2 = ∇
′′

U2
V2 −

f12

f22 1(U2,V2)∇
′

(ln f1) (31)

∇U1 U2 = (U2ln f2)U1 + (U1ln f1)U2. (32)

for all U1,V1 ∈ Γ(TN1) and U2,V2 ∈ Γ(TN2). Here ∇
′

(ln f1) and ∇
′′

(ln f2) denote the gradient of ln f1 and ln f2
with respect to the metrics 11 and 12 respectively [22]. In terms of the Riemannian metric 1 on M and the
Levi-Civita connection ∇ on M, formulae (30) and (31) are respectively written as :

∇U1 V1 = ∇
′

U1
V1 − 1(U1,V1)∇ln f2, (33)

∇U2 V2 = ∇
′′

U2
V2 − 1(U2,V2)∇ln f1. (34)

where ∇ln f is defined as 1(∇ln f ,U) = Uln f .
By using the covariant derivative formula for the doubly warped products (c.f. [1]), the following result

is obtained in [23] .

Proposition 4.1. Let M = f2 N1 × f1 N2 be a doubly warped product manifold with metric 1 = f22
11 + f12

12. Then
(i) The leaves N1 × {q} and the fibers {p} ×N2 of the doubly warped products are totally umbilic.

(ii) The leaf N1 × {q} is totaly geodesic if 1radN2 ( f2)|q = 0. Similarly, the fibers {p} × N2 is totally geodesic if
1radN1 ( f1)|p = 0.

Let M = f2 N1 × f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄. If we denote
by σ1 and σ2 the second fundamental form of N1 and N2 respectively in M, then

σ1(U1,V1) = −
f 2
2

f 2
1

11(U1,V1)∇
′′

(ln f2) = −1(U1,V1)∇ln f2 (35)

and

σ2(U2,V2) = −
f 2
1

f 2
2

12(U2,V2)∇
′

(ln f1) = −1(U2,V2)∇ln f1, (36)

for all U1,V1 ∈ Γ(TN1) and U2,V2 ∈ Γ(TN2). That is, both the factors namely N1 and N2 of M are totally
umbilical in M with mean curvature vectors ∇ln f2 and ∇ln f1 respectively.
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Proposition 4.2. Let M = f2 N1 × f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄. Then

1(h(U1,U2),FV1) = 1(h(V1,U2),FU1), (37)

and

1(h(U1,U2),FV2) = 1(h(U1,V2),FU2) (38)

for U1,V1 ∈ Γ(TN1) and U2,V2 ∈ Γ(TN2).

Proof. By virtue of Gauss formula, we may write

1(h(U1,U2),FV1) = 1(∇̄U2 U1, φV1) − 1(∇U2 U1,TV1)

Making use of (2),(3),(4),(32) and the fact that TUi ∈ Γ(TNi) (1 ≤ i ≤ 2) the above equation takes the form

1(h(U1,U2),FV1) =(U2ln f2)1(TU1,V1) − 1(∇̄U2φU1,V1)
=(U2ln f2)1(TU1,V1) − 1(∇U2 TU1,V1)
− 1(∇̄U2 FU1,V1).

Further applying (7),(8),(32) and the fact that TUi ∈ Γ(TNi), the right hand side reduces to 1(h(V1,U2),FU1).
This proves the first part of the Proposition.

For the second part, on writing

1(h(U1,U2),FV2) = 1(∇̄U1 U2, φV2) − 1(∇U1 U2,TV2)

and working along the same lines as in the proof of (37), we obtain that

1(h(U1,U2),FV2) = 1(h(U1,V2),FU2).

Lemma 4.3. Let M = f2 N1× f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄ with only one
of the factors a φ-anti invariant submanifold of M̄. Then U1ln f1 = η(U1) (resp. U2ln f2 = η(U2)) if N1 (resp. N2) is
φ-anti invariant.

Proof. For U1,V1 ∈ Γ(TN1) and U2,V2 ∈ Γ(TN2),

1(h(U1,U2),FV2) =1(∇̄U2 U1, φV2) − 1(∇U2 U1,TV2)
= − 1(φ∇̄U2 U1,V2) + (U1ln f1)1(TU2,V2)

The first term in the right hand side of the above equation on making use of (4),(6), (7),(8) and (32) is written
as

−η(U1)1(TU2,V2) − (TU1ln f1)1(U2,V2) + 1(h(U2,V2),FU1).

That makes the equation to take the form:

1(h(U1,U2),FV2) =(U1ln f1 − η(U1))1(TU2,V2)
− (TU1ln f1)1(U2,V2) + 1(h(U2,V2),FU1).

(39)

Similarly, on writing

1(h(U1,U2),FV1) = 1(∇̄U1 U2, φV1) − 1(∇U1 U2,TV1),
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and making use of (2),(3),(4) and (32), the above equation takes the form

1(h(U1,U2),FV1) =(U2ln f2)1(TU1,V1) − η(U2)1(TU1,V1)
− 1(∇̄U1φU2,V1).

On applying (6),(7),(8) and (32), the last term in the right hand side of the above equation reduces to

−(TU2ln f2)1(U1,V1) + 1(h(U1,V1),FU2),

and thus we obtain

1(h(U1,U2),FV1) =1(h(U1,V1),FU2) − (TU2ln f2)1(U1,V1)
+ (U2ln f2 − η(U2))1(TU1,V1).

(40)

If N1 is φ-anti invariant, then (39) can be written as

1(h(U1,U2),FV2) = (U1ln f1 − η(U1))1(TU2,V2) + 1(h(U2,V2),FU1),

or

1(h(U1,U2),FV2) − 1(h(U2,V2),FU1) = (U1ln f1 − η(U1))1(TU2,V2). (41)

The left hand side of (41) is symmetric in U2,V2 whereas the right hand side is skew-symmetric in U2,V2.
This fact together with the assumption that N2 is not anti-invariant, gives

U1ln f1 = η(U1). (42)

If N2 is φ-anti-invariant, then equation (40) takes the form :

1(h(U1,U2),FV1) − 1(h(U1,V1),FU2) = (U2ln f2 − η(U2))1(TU1,V1). (43)

Since, the left hand side of (43) is symmetric in U1,V1, the right hand side is skew-symmetric in U1,V1 and
N1 is not anti-invariant, we deduce that

U2ln f2 = η(U2). (44)

This proves the Lemma.

Theorem 4.4. There does not exist a non-trivial doubly warped product submanifold of a Kenmotsu manifold normal
to the structure vector field ξ.

Proof. Let M = f2 N1 × f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄ with
ξ ∈ Γ(T⊥M). Then by (40), we have

1(h(U1,U2),FV1) =1(h(U1,V1),FU2) − (TU2ln f2)1(U1,V1)
+ (U2ln f2)1(TU1,V1)

for any U1,V1 ∈ Γ(TN1) and U2 ∈ Γ(TN2). Interchanging U1,V1 and subtracting the obtained equation from
the above while using (37) and the symmetry of 1 and h we obtain

(U2ln f2)1(TU1,V1) = 0

It follows from the above that either N1 is φ-anti invariant or f2 is constant on N2. If N1 is φ-anti invariant
then by Lemma 4.3 and the assumption that ξ ∈ T⊥M, U1ln f1 = η(U1) = 0. That is f1 is constant on N1,
which means either f1 is constant or f2 is constant.This proves that M is infact a single warped product.
Similarly, by considering equation (39), one can argue on the same lines that either f1 is constant on N1 or
f2 is constant on N2, proving that there does not exist a non trivial doubly warped product submanifold M
of a Kenmotsu manifold such that ξ is normal to M.
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This leads us to consider doubly warped product submanifolds of Kenmotsu manifolds with structure
vector field tangential to the submanifold.

Let M = f2 N1 × f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄ such that
ξ ∈ ΓTM.

If ξ1 and ξ2 are components of ξ along N1 and N2 respectively then by virtue of formulae (5),(6) and (9),

∇U1ξ = U1 − η(U1)ξ. (45)

On writing ξ = ξ1 + ξ2 and making use of (32) and (33), the above equation reduces to

∇
′

U1
ξ1 − η(U1)∇ln f2 + (U1ln f1)ξ2 + (ξ2ln f2) = U1 − η(U1)ξ1 − η(U1)ξ2

On comparing components along N1 and N2 in the above equation, we obtain

∇
′

U1
ξ1 + η(U1)ξ1 = (1 − ξ2ln f2)U1 (46)

and

η(U1)∇ln f2 = (η(U1) + U1ln f1)ξ2. (47)

Similarly writing ∇U2ξ = U2 − η(U2)ξ and proceeding along the same lines, we obtain

∇
′′

U2
ξ2 + η(U2)ξ2 = (1 − ξ1ln f1)U2, (48)

and

η(U2)∇ln f1 = (η(U2) + U2ln f2)ξ1. (49)

From (47) and (49), we observe that

 If ξ1 and ξ2 are both non zero, then ∇(lnf1) is along
ξ1 and ∇(lnf2) is along ξ2.

(50)

Now, taking U1 = ξ1 in (46), we get

ξ1 = (1 − ξ2ln f2)ξ1

which implies that

ξ2ln f2 = 0

That is,

1(∇ln f2, ξ2) = 0. (51)

From observation (50) and equation (51), we find that ∇ln f2 = 0. That is f2 is constant.
Similarly, taking U2 = ξ2 in equation (48), we find that

ξ1ln f1 = 0

i.e.,

1(∇ln f1, ξ1) = 0.

Again, the above equation together with observation (50) yields that f1 is constant on N1. Hence, in this
case M is simply a Riemannian product of N1 and N2.

In particular, if ξ lies completely along one of the factors of M, then we have
Case (i) when ξ2 = 0, then by equation (47), ∇ln f2 = 0. That is, f2 is constant along N2.
Case (ii) when ξ1 = 0, then by equation (49), ∇ln f1 = 0, which means f1 is constant along N1.
The above findings can be summarized as :
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Theorem 4.5. Let M = f2 N1× f1 N2 be a doubly warped product submanifold of a Kenmotsu manifold M̄ such that the
structure vector field ξ is tangent to M. If ξ has a non-trivial components along N1 and N2, then M is a Riemannian
product of N1 and N2 (i.e. a trivial warped product). However, if ξ is tangent to the first factor of M, then f2 is
constant whereas if ξ is tangent to N2, then f1 is constant.

Corollary 4.6. There does not exist a non-trivial doubly warped product submanifold of a Kenmotsu manifold tangent
to the structure vector field ξ.

5. Warped product submanifolds of a Kenmotsu manifold with one of the factors a φ-anti invariant
submanifold

In view of Theorem 4.5 doubly warped product submanifolds f2 N1 × f1 N2 of Kenmotsu manifolds are
trivial i.e. in this case, either f1 or f2 is constant. Therefore, the only warped products in a Kenmotsu manifold
are single warped products with structure vector field ξ tangent to the submanifold (c.f. Theorem4.4).

Warped product manifolds were introduced by R.L.Bishop and B.O’Neill [2] as a generalized version
of product manifolds by homothetically warping the product metric on to the fibers. The study of warped
products with extrinsic geometric point of view was initiated by B.Y.Chen [7, 8] when he considered CR-
submanifolds of a Kaehler manifold as warped products.Our aim in this section is consider pseudo-slant
submanifolds of a Kenmotsu manifold as warped products.

We begin the proceedings by stating an immediate consequence of Theorem 4.5

Proposition 5.1. There does not exist a (single) non-trivial warped product submanifold of a Kenmotsu manifold
such that the structure vector field ξ is tangential to the second factor of the submanifold.

Hence, the possible non-trivial warped product submanifold M of a Kenmotsu manifold has the form
N1 × f N2 with structure vector field ξ tangent to the first factor N1 of the warped product. In this case, as
an immediate consequence of formula (32), we have

∇U1 U2 = ∇U2 U1 = (U1ln f )U2 (52)

for each U1 ∈ Γ(TN1) and U2 ∈ Γ(TN2). Further, it follows from formula (35) that σ1(U1,V1) = 0 for all
U1,V1 ∈ Γ(TN1) i.e., N1 is totally geodesic in M and by formula (36), we have

σ2(U2,V2) = −1(U2,V2)∇ln f , (53)

which shows that N2 is totaly umbilical in M with mean curvature vector ∇ln f .

Proposition 5.2. Let N1 × f N2 be a warped product submanifold of a Kenmotsu manifold M̄. If the structure vector
field ξ = ∂

∂t , then the warping function f satisfies: f (t) = et.

Proof. From formula (5), (52) and the fact that ξ is tangential to N1, we have

(ξln f )U2 = U2,

which implies that f (t) = et.

From now on, we assume that M is a warped product submanifold of a Kenmotsu manifold M̄ with only
one of the factors a φ-anti invariant submanifold of M̄.

First, we prove few preparatory results.

Theorem 5.3. If M is a warped product submanifold of a Kenmotsu manifold M̄, with only one of the factors a φ-anti
invariant submanifold of M̄, then for each vector field Z tangential to the anti-invariant factor of M and U,V ∈ Γ(TM),
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1(h(U,V), φZ) = 1(h(U,Z),FV) = 1(h(V,Z),FU), (54)

when N1 is φ-anti invariant and

1(h(U,V), φZ) = 1(h(U,Z),FV) − (TVln f )1(U,Z), (55)

when N2 is φ-anti invariant.

Proof. Writing U = U1 + U2 with U1 ∈ Γ(TN1) and U2 ∈ Γ(TN2), we have

1(∇UTV,Z) = 1(∇U1 TV,Z) + 1(∇U2 TV,Z).

If N1 is φ-anti invariant, then the first term in the right hand side of the above equation vanishes by virtue
of formula (52) and the fact that in this case either TV = 0 or it lies in Γ(TN2), whereas the second term on
using (52) takes the form: (Zln f )1(TU,V). Thus, we have

1(∇UTV,Z) = (Zln f )1(TU,V). (56)

Similarly, when N2 is φ-anti invariant, then making use of formula (52) and the fact that N1 is totally
geodesic in M, we obtain

1(∇UTV,Z) = (TVln f )1(U,Z). (57)

Now, by formula (2) and (6), we may write

1(h(U,V), φZ) = 1(∇̄UV, φZ) = −1(φ∇̄UV,Z)
= 1((∇̄Uφ)V,Z) − 1(∇̄UφV,Z).

Making use of (4),(6),(7) and (8) on the right hand side of the above equation gives

1(h(U,V), φZ) = 1(TU,V)η(Z) − 1(∇UTV,Z) + 1(h(U,Z),FV) (58)

If N1 is φ-anti invariant, then on substituting from (56), the above equation yields

1(h(U,V), φZ) = (Zln f − η(Z))1(U,TV) + 1(h(U,Z),FV).

The first term in the right hand side of the above equation vanishes by virtue of Lemma 4.3. That is, in this
case, we have

1(h(U,V), φZ) = 1(h(U,Z),FV)

Similarly, when N2 is φ-anti invariant, then η(Z) = 0 as ξ is tangential to N1. Taking account of this fact and
substituting from (57) into (58), we obtain that in this case,

1(h(U,V), φZ) = 1(h(U,Z),FV) − TVln f1(U,Z)

Corollary 5.4. Let M = N1 × f N2 be a warped product submanifold of a Kenmotsu manifold M̄ with only one of the
factors a φ-anti invariant submanifold of M̄. Then for U1 ∈ Γ(TN1) and U2 ∈ Γ(TN2),

AFU1 U2 = AFU2 U1

when N1 is φ-anti invariant and

AFU1 U2 − AFU2 U1 = (TU1ln f )U2

when N2 is φ-anti invariant.



V. A. Khan, M. Shuaib / Filomat 31:18 (2017), 5833–5853 5848

Proof. If N1 is φ-anti invariant, then on taking V = U2 and Z = U1 in (54) gives

1(h(U,U2),FU1) = 1(h(U,U1),FU2)

for each U ∈ Γ(TM), which in view of (8) yields

AFU1 U2 = AFU2 U1

Similarly, if N2 is φ-anti invariant, then on taking V = U1 and Z = U2 in (55) and using (8), we obtain

AFU1 U2 − AFU2 U1 = (TU1ln f )U2

This proves the Corollary.

Now, we prove some formulas for later use.

Lemma 5.5. Let M be a warped product submanifold of a Kenmotsu manifold M̄ with first factor a φ-anti invariant
submanifold of M̄. Then

(i) (∇̄UT)Z = −(Zln f )TU
(ii) (∇̄ZT)U = 0

(iii) C(∇̄XT)Y = 1(TX,Y)∇ln f

for any U ∈ Γ(TM), Z ∈ Γ(TN1) and X,Y ∈ Γ(TN2).

Proof. By (5.3), we have

1(AFZU,V) = −1(th(U,Z),V)

i.e.,

1(AFZU + th(U,Z),V) = 0

for any U,V ∈ Γ(TM). That means,

AFZU + th(U,Z) = 0. (59)

Making use of this identity and the fact that 1(TU,Z) = 0 in formula (13), we get

(∇̄UT)Z = −η(Z)TU.

Using now that η(Z) = Zln f , we obtain the statement (i).
Now,by formula(2.11), we have

(∇̄ZT)U = ∇ZTU − T∇ZU (60)

Writing U = U1 + U2 with U1 ∈ Γ(TN1) and U2 ∈ Γ(TN2) and using (52),we get

∇ZTU = ∇ZTU1 + ∇ZTU2

The first term in the right hand side of the above equation is zero as TU1 = 0, whereas by formula (52),
∇ZTU2 = (Zln f )TU2. It then follows that

∇ZTU = (Zln f )TU2

On the other hand, since ∇ZU1 ∈ Γ(TN1) and N1 is φ− anti invariant, T∇ZU1 = 0. Further, by (52) T∇ZU2 =
(Zln f )TU2. That gives

T∇ZU = (Zln f )TU2
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Taking accounts of these observations in equation (60), we get (∇̄ZT)U = 0, proving the statement (ii) of the
Lemma.

Now, for any X,Y ∈ Γ(TN2), by formula (11), we may write

(∇̄XT)Y = ∇XTY − T∇XY.

If ∇
′′

denotes the Levi-Civita connection on TN2 and σ2 the second fundamental form of the immersion
of N2 into M, then the above equation , on using the Gauss formula, is expressed as

(∇̄XT)Y = ∇
′′

XTY + σ2(X,TY) − T∇
′′

XY − Tσ2(X,Y).

As σ2 ∈ Γ(TN1), Tσ2(X,Y) = 0 and by formula (53),σ2(X,TY) = −1(X,TY)∇ln f , the above equation yields,

(∇̄XT)Y = (∇XT)Y − 1(X,TY)∇ln f , (61)

where ∇
′′

XTY − T∇′′XY is denoted by (∇XT)Y. It follows from (61) that

C(∇̄XT)Y = 1(TX,Y)∇ln f .

This proves part (iii) and the Lemma completely.

Pseudo-slant submanifolds of Kenmotsu manifolds are a special case of submanifolds admitting a φ-
anti invariant distribution. Our aim in the remainder of this section, is to study these submanifolds in a
Kenmotsu manifold.

If N⊥ and Nθ denote respectively φ-anti invariant and pointwise slant submanifold (with slant function
θ) of a Kenmotsu manifold M̄ such that M1 = N⊥ × f Nθ admits an isometric immersion into M̄, then M1 is
a point wise pseudo-slant warped product submanifold of M̄. By virtue of Proposition (5.1), the structure
vector field in this case, is tangential to the submanifold N⊥. More precisely, if D⊥ and Dθ denote φ-anti
invariant and point wise slant distributions on M1 such that both are involutive, then

TN⊥ = D⊥⊕ < ξ > and TNθ = Dθ

In this section, we investigate characterizations under which a pseudo-slant submanifold of a Kenmotsu
manifold is a warped product submanifold. The following Theorem was proved by S.Hiepko [10] that we
will be using to obtain the characterizations.

Theorem 5.6. Let F be a vector sub bundle in the tangent bundle of a Riemannian manifold M and let F⊥ be its
normal bundle. Assume that the two distributions are both involutive and the integral manifold of F (resp.F⊥) are
extrinsic spheres (resp. totally geodesic). Then M is locally isometric to a warped product M1 × f M2. Moreover, if M
is simply connected and complete there exists a global isometry of M with a warped product.

Now, we prove

Theorem 5.7. A proper pointwise pseudo-slant submanifold M1 of a Kenmotsu manifold is a warped product
submanifold of the type N⊥ × f Nθ if and only if there is a function µ on M1 with Xµ = 0 for all X ∈ Γ(Dθ) such that

1((∇̄UT)TV,Z) = cos2(θ)(Zµ) 1(BU,BV) (62)

for all U,V ∈ Γ(TM1) and Z ∈ Γ(D⊥⊕ < ξ >).

Proof. If M1 = N⊥ × f Nθ be a warped product submanifold of a Kenmotsu manifold M̄, then we write

(∇̄UT)V = (∇̄UT)BV + (∇̄UT)CV + η(V)(∇̄UT)ξ (63)

By Lemma 5.5 and formula (15), the last two terms in the right hand side of the above equation are given
by

(∇̄UT)CV = −(CVln f )TU, and (∇̄UT)ξ = −TU. (64)
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Therefore, (63)can be re-written as:

(∇̄UT)V = (∇̄UT)BV − ((CVln f ) + η(V))TU (65)

Now,

(∇̄UT)BV = (∇̄BUT)BV + (∇̄CUT)BV + η(U)(∇̄ξT)BV

By virtue of Lemma 5.5 and formula (14) (∇̄CUT)BV = 0 = (∇̄ξT)BV. Thus, the above equation reduces to

(∇̄UT)BV = (∇̄BUT)BV = B[(∇̄BUT)BV] + C[(∇̄BUT)BV]

Also,as C[(∇̄BUT)BV] = 1(TBU,BV)∇ln f , we may express (∇̄UT)BV as:

(∇̄UT)BV = B[(∇̄BUT)BV] + 1(TU,V)∇ln f (66)

Substituting from (64)and(66) into (65) and taking product with Z ∈ Γ(TN1) , we obtain that

1((∇̄UT)V,Z) = Zln f 1(TBU,BV). (67)

Replacing V by TV in the above equation and using (1) and (16), we obtain (62)
Conversely, suppose that M1 is a point wise pseudo-slant submanifold of a Kenmotsu manifold with

φ-anti invariant distribution D⊥ and pointwise slant distribution Dθ such that for a smooth function µ on
M1 (with Xµ = 0), the condition (62) holds. Then for any Z,W ∈ D⊥⊕ < ξ >, we have

1((∇̄ZT)W,Z
′

) = 0,

as well as 1((∇̄ZT)W,X) = −1(W, (∇̄ZT)X) = 0, for any X ∈ Dθ and Z′ ∈ D⊥⊕ < ξ >. This means, (∇̄ZT)W = 0
i.e.,

T∇ZW = ∇ZTW = 0

which means ∇ZW ∈ D⊥⊕ < ξ >. That is, the distribution D⊥⊕ < ξ > is parallel. In other words D⊥⊕ < ξ >
is an involutive distribution whose leaves are totally geodesic in M1. Further, by virtue of(62)

1((∇̄XT)Z,W) = 0, (68)

and for any Y ∈ Dθ,

1((∇̄XT)Z,Y) = −1(Z, (∇̄XT)Y) = −(Zln f )1(TX,Y) (69)

It follows from (68) and (69) that

(∇̄XT)Z = −21(∇µ,Z)TX

which implies that

∇XZ = 21(∇µ,Z)X.

Taking product with Y ∈ Dθ, gives

1(∇XY,Z) = −21(X,Y)1(∇µ,Z).

As Xµ = 0 for all X ∈ Dθ, the above equation implies that 1([X,Y],Z) = 0. That means Dθ is involutive. If
σ2 is the second fundamental form of the immersion of the leaves of Dθ into M1, then

σ2(X,Y) = −21(X,Y)∇µ.

That means each leaf Nθ of Dθ is totally umbilical in M with mean curvature ∇µ and as Xµ = 0, Nθ is an
extrinsic sphere. Hence, by Theorem 5.6, M is a warped product N⊥ × f Nθ, where f = eµ.
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Example 5.8. [21] Consider the complex space C5 with the usual Kaehler structure and real global coor-
dinates (x1, y1, x2, y2, x3, y3, x4, y4, x5, y5). Let M̄ = R × f C

5 be the warped product between the real line R
and C5, where the warping function is f = et, t being the global coordinates on R. Then M̄ is a Kenmotsu
manifold. Now, consider a 7-dimensional submanifold M of M̄ with an orthonormal frame of tangent
vectors e1, e2, e3, e4, e5, e6, e7 as :

e1 = cosθ
∂

∂x1 + sinθ
∂

∂y3 , e2 = −sinθ
∂

∂x3 + cosθ
∂

∂y1

e3 = cosθ
∂

∂x2 − sinθ
∂

∂y4 , e4 = sinθ
∂

∂x4 + cosθ
∂

∂y2

e5 =
∂

∂x3 , e6 =
∂

∂x4 , e7 =
∂
∂t
,

for any θ ∈ (0, π2 ). Then the distribution Dθ = span{e1, e2, e3, e4} and D⊥ = span{e5, e6, e7} are obviously
integrable. Let us denote by Nθ and N⊥ their, integral submanifolds, respectively. The metrics on Nθ and
N⊥ are respectively given by 1Nθ =

∑2
i=1((dxi)2 + (dyi)2) and 1N⊥ = dt2 + e2t∑4

α=3(dxα)2. Then M = N⊥ × f Nθ is
a warped product submanifold, isometrically immersed in M̄. The warping function is given by f (t) = et.

With regard to pseudo-slant warped product submanifold of the type Nθ× f N⊥ in a Kenmotsu manifold
M̄, we observed that the structure vector field ξ can not lie in the slant distribution on M (c.f. Note 3.1),
whereas by Proposition 5.1, ξ can not be tangential to the second factor of a warped product submanifold
of M̄ . This rules out the existence of a non-trivial warped product submanifolds of the type Nθ × f N⊥ in a
Kenmotsu manifold.

However, if M is a pseudo-slant submanifold of a Kenmotsu manifold M̄ tangent to the structure
vector field ξ such that the distribution Dθ

⊕ < ξ > is involutive then one may think of a warped product
submanifold of the type Nθ × f N⊥ of M̄, where Nθ is a leaf of Dθ

⊕ < ξ > (which infact is not a slant
distribution in view of the formal definition) and N⊥ is a leaf of φ-anti invariant distribution on M (which
is involutive by Theorem 3.8). Such warped product submanifolds will be denoted by the symbol M2.

First, we prove the following:

Proposition 5.9. Let M be a proper pointwise pseudo-slant submanifold of a Kenmotsu manifold M̄ tangent to the
structure vector field ξ. Then [X, ξ] ∈ Dθ

⊕ < ξ > for any X ∈ Dθ.

Proof. By using (2.5), and the fact that in this case η(Z) = 0, it can be seen that

1(∇Xξ,Z) = 0 (70)

for any X ∈ Dθ and Z ∈ D⊥. On the other hand

1(∇ξX,Z) = 1(∇̄ξX,Z) = 1(φ∇̄ξX, φZ) + η(∇̄ξX)η(Z).

Making use of formulae (3),(4) and the fact that η(Z) = 0 the right hand side reduces to

1(∇̄ξTX, φZ) + 1(∇̄ξFX, φZ)

The first term is zero by (6) and (9), whereas the second term in view of the fact that FDθ and φD⊥ are
orthogonal, is written as −1(FX, ∇̄ξφZ), which by virtue of (4) reduces to −1(FX, φ∇̄ξZ). Thus, we have

1(∇ξX,Z) = −1(FX,F∇ξZ) = −sin2 θ1(X,∇ξZ)

That gives

cos2 θ1(∇ξX,Z) = 0 (71)
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As M is a proper pointwise pseudo-slant submanifold, we obtain from (70) and (71) that

1([X, ξ],Z) = 0

for each X ∈ Dθ
⊕ < ξ > and Z ∈ D⊥, proving the assertion.

Thus, if the pointwise slant distribution Dθ is involutive on M, then the above Proposition guarantees
the foliation of M by the leaves of Dθ

⊕ < ξ >. In this case, we will be denoting the leaves of Dθ
⊕ < ξ >

by Nθ itself. Further, if the orthogonal complement of Dθ
⊕ < ξ > is a φ-anti invariant distribution , then

Nθ × f N⊥ is a pseudo-slant submanifold of M̄ (with N⊥ a leaf of φ-anti invariant distribution D⊥).

Theorem 5.10. A proper pointwise pseudo-slant submanifold M of a Kenmotsu manifold tangent to the structure
vector field ξ is a pseudo-slant warped product of the type Nθ × f N⊥ if and only if there is a function µ on M with
Zµ = 0 for each Z ∈ D⊥ such that

AFZTX − AFTXZ = −cos2(θ)(Xµ)Z (72)

for each X ∈ Dθ
⊕ < ξ >.

Proof. If M2 = Nθ × f N⊥ is a warped product submanifold of a Kenmotsu manifold M̄ tangent to the
structure vector field ξ, then formula (72) holds on M by virtue of corollary 5.4.

Conversely, suppose formula (72) holds on a pointwise pseudo-slant submanifold M of a Kenmotsu
manifold M̄, then for any X,Y ∈ Dθ

⊕ < ξ > and Z ∈ D⊥,

1(AFZX − AFXZ,Y) = 0

That is,

1(h(X,Y),FZ) = 1(h(Y,Z),FX) (73)

On the other hand, by (13),(8) and the facts that η(Z) = 0, and 1(TX,Z) = 0, we have

1((∇̄XT)Y,Z) = 1(h(X,Z),FY) − 1(h(X,Y),FZ) (74)

From (73) and (74)

1((∇̄XT)Y,Z) = 0,

which in view of formula (11) and the fact that

1(T∇XY,Z) = −1(∇XY,TZ) = 0,

implies that

1(∇XTY,Z) = 0

As Dθ is proper, the above equation shows that Dθ
⊕ < ξ > is involutive on M and its leaves are totally

geodesic in M.
Now, by (13) and (72), we have

(∇̄XT)Z − (∇̄ZT)X = AFZX − AFXZ = −(TXµ)Z

That gives

1((∇̄XT)Z) − ((∇̄ZT)X,W) = −(TXµ)1(Z,W)
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for each W ∈ D⊥. Taking account of (11) and the fact that TW = 0 for each W ∈ D⊥ in the above equation ,
we get

1(∇ZW,TX) = −1(Z,W)1(∇µ,TX)

which shows that D⊥ is totally umbilical in M with mean curvature vector ∇µ. Further as Zµ = 0 and D⊥ is
involutive, the leaves M⊥ of D⊥ are extrinsic spheres in M. Hence, by virtue of Theorem 5.6, M is a warped
product manifold Nθ × f N⊥ where Nθ and N⊥ denote the leaves of Dθ

⊕ < ξ > and D⊥ respectively.

Example 5.11. Let M̄ be as in example 5.8. Then the distributions Dθ = span{e1, e2, e3, e4, e7} and D⊥ =
span{e5, e6} are integrable on a 7-dimensional submanifold M of M̄. The Riemannian metric 1 on the leaves
of Dθ and D⊥ are respectively given by

1Nθ = dt2 + e2t
2∑

i=1

{(dxi)2 + (dyi)2
} and gN⊥ =

4∑
j=3

(dxj)2

Then M is a pseudo-slant warped product submanifold of the type Nθ × f N⊥, where Nθ and N⊥ denote the
leaves of Dθ and D⊥ respectively and warping function f (t) = et.

References

[1] D. E. Allison , Geodesic completeness in static spacetime, Geom. Dedicata 26(1988), 85-97.
[2] R. L. Bishop, B. ONeill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145(1969), 149.
[3] J. L Cabrerizo, L. M. Carriazo, Fernandez and M. Fernandez, Semi slant submanifolds of a Sasakian manifold, Geometric Dedicata,

78(1999), 183-199.
[4] J. L Cabrerizo, L. M. Carriazo, Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42(2000),

125-138.
[5] B. Y. Chen, CR-submanifold of Keahler manifolds, J. Differential Geometry, 16(1981), 305-323.
[6] B. Y. Chen, Geometry of slant submmanifolds, Katholieke University Leuven, (1990).
[7] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Montash. Math. 133(2001), 177-195.
[8] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Montash. Math. 134(2001), 103-119.
[9] B. Y. Chen and O. J. Garay, Pointwise slant submanifolds in almost Hermitian manifold, Turk. J. Math. 36(2012), 630-640.

[10] S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann. 241(1979), no.3, 209-215.
[11] V. A. Khan and M. A. Khan, Pseudo-Slant Submanifolds of a Sasakian manifold, Indian J. Pure Appl. Math. 38(1)2007, 31 -42.
[12] V. A. Khan, K. A. Khan and Siraj-Uddin, CR-Warped product submanifolds in a Kaehler Manifold, Southeast Asian Bull. Math.

33(2009)no.5, 865-874.
[13] V. A. Khan, M .A. Khan and Siraj-Uddin, A note on warped product submanifolds of Kenmotsu manifolds, Math. Slovaca

61(2011),
[14] V. A. Khan and Shuaib. M , Some Warped product submanifolds of a Kenmotsu Manifold, Bull. Korean. Math. Soc. 51(2014)no.3

, 863881.
[15] K. Kenmotus, A class of almost contact Riemannian manifolds, Tohoku Math. 24(1972), 93-103.
[16] A. Lotta, Slant Submanifolds in contact Geometry, Bull. Math. Soc Romanie 39(1996), 183-198.
[17] M. I. Munteanu, Warped product contact CR-submanifold of Sasakian space form, Publ. Math. Debreen, 66(2005)no. 1-2, 75-120.
[18] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, An. Stiint. Univ. AI. I. cuza Iasi. Mat. (N.S) 9(1994), 55-61.
[19] K. S. Park , Pointwise slant and pointwise semi-slant submanifolds in almost contact metric manifolds, arXiv : 1410.5587v2

[math.DG], 19 Nov 2014.
[20] S. Tanno, The automorphism groups of almost contact metric manfolds, Tohoku Math. J. 21(1969), 21-38.
[21] Siraj Uddin, V. A. Khan and K. A. Khan, Warped product submanifolds of a Kenmotsu manifold, Turk. J. Math. 36(2012), 319-330.
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