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Abstract. In this work we investigate a natural preorder on c0, the Banach space of all real sequences tend
to zero with the supremum norm, which is said to be “convex majorization”. Some interesting properties of
all bounded linear operators T : c0 → c0, preserving the convex majorization, are given and we characterize
such operators.

1. Introduction and Preliminaries

For any two vectors x, y ∈ Rn, we say x is majorized by y, denoted by x ≺ y, if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i (for k = 1, . . . ,n − 1)

and

n∑
i=1

x↓i =

n∑
i=1

y↓i .

Here x↓1 ≥ x↓2 ≥ · · · ≥ x↓n is the decreasing order of components of a vector x. There are several equivalent
conditions of vector majorization. Hardy, Littlewood, and Polya in [4] proved that x = (x1, . . . , xn) ≺ y =
(y1, . . . , yn) is equivalent to

n∑
i=1

φ(xi) ≤
n∑

i=1

φ(yi),

for all continuous convex function φ : R → R. In fact, the previous characterization shows that if x ≺ y,
then the set of the components of x, lies in the convex hull spanned by the components of y, i.e.,

co(x) ⊆ co(y). (1)
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The topic of linear preservers is of interest to a large group of matrix theorists. For some references on
this subject we refer the reader to [1–3, 5–8]. On the basis of (1), Khalooei et al. [5, 6], introduced the concept
of left matrix majorization and determined all linear operator preserving left matrix majorization on Rn.

Throughout this work, c0 is the Banach space of all convergent real sequences tend to zero with the
supremum norm. An element f ∈ c0 can be represented by

∑
i∈N

f (i)ei, where ei : N → R is defined by

ei( j) = δi j, the Kronecker delta. Let T : c0 → c0, be a bounded linear operator. Then an easy computation
shows that, T is represented by a matrix (ti j)i, j∈N in the sense that

(T f )(i) =
∑
j∈N

ti j f ( j), for f ∈ c0 and i ∈N,

where ti j = (Te j)(i). To simplify notation, we can incorporate T to its matrix form (ti j)i, j∈N.
In the following of this paper, by using (1), the notion of the left matrix majorization is extended to c0.

Then all of the bounded linear operators, preserving such a majorization, together with some important
properties of them, are obtained and determined. We also investigate the linear operators T : c0 → c0,
which satisfy co(T f ) = co( f ), for all f ∈ c0. Then we prove that any row sum of them belongs to [0, 1].

2. Main Results

First, we define a preorder on c0, as the following.

Definition 2.1. Let f , 1 ∈ c0. We say that f is convex majorized by 1, and denoted by f ≺c 1, if co( f ) ⊆ co(1). Also,
f is said to be convex equivalent to 1, denoted by f ∼c 1, whenever f ≺c 1 ≺c f , i.e., co( f ) = co(1), where co( f )
means convex hull spanned by the components of f .

Remark 2.2. For f , 1 ∈ c0, some consequences of the previous definition are as follows.

• If f ≺c 1, then ‖ f ‖ ≤ ‖1‖.

• f ≺c 1, iff λ f ≺c λ1, for all λ ∈ R, iff f ≺c n1, for all n ∈N.

• If n f ≺c 1, for each n ∈N, then f = 0.

Definition 2.3. A bounded linear operator T : c0 → c0 is said to be order preserving, if T preserves ≺c, that is, for
f , 1 ∈ c0, the relation f ≺c 1 implies T f ≺c T1. The set of all such operators is denoted by Pcm.

One of the concepts, appears in the study of order preserver operators, is the generalization of the concept
of convex combination, which appears in [2].

Definition 2.4. Let (X, ‖.‖) be a normed linear space and A ⊆ X. The countable convex hull of A, denoted by cco(A),
is defined to be the set ∞∑

i=1

λixi; xi ∈ A, λi ≥ 0,
∞∑

i=1

λi = 1,
∞∑

i=1

λixi conver1es

 .
The following assertions come from [2].

• co(A) ⊆ cco(A) ⊆ co(A), so cco(A) is a convex set.

• If X is a Banach space and A ⊆ X is bounded, then in the definition of cco(A),
∑
∞

i=1 λixi is always a
convergent series.

• If A ⊆ R, then cco(A) = co(A).

It can be proved that, for f ∈ c0 if 0 ∈ co( f ), then co( f ) = [a, b], for some a, b ∈ R with a ≤ 0 ≤ b, and if
0 < co( f ), then co( f ) is equal to either an interval [a, 0), for some a < 0, or (0, b], for some b > 0.

In this section, we characterize all linear operators T : c0 → c0 which preserve ≺c .
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Some elementary properties of Pcm

• 0, id ∈ Pcm.

• If T1,T2 ∈ Pcm, then T1 ◦ T2 ∈ Pcm. In particular, λT ∈ Pcm for λ ∈ R and T ∈ Pcm.

• Any constant coefficient of a permutation lies in Pcm.

Example 2.5. Let a, b ∈ R and S : c0 → c0 be defined by

S f = (a f1, b f1, a f2, b f2, . . . ),

for f = ( f1, f2, . . . ) ∈ c0. It is obvious that S ∈ Pcm.
In general case, let (nk) be a sequence of natural numbers. Then the bounded linear operator T : c0 → c0, defined by

T f = (a f1, . . . , a f1︸       ︷︷       ︸
n1

, b f1, . . . , b f1︸       ︷︷       ︸
n2

, a f2, . . . , a f2︸       ︷︷       ︸
n3

, b f2, . . . , b f2︸       ︷︷       ︸
n4

, a f3, . . . , a f3︸       ︷︷       ︸
n5

, b f3, . . . , b f3︸       ︷︷       ︸
n6

, . . . ),

for f = ( f1, f2, . . . ) ∈ c0, belongs to Pcm.

Lemma 2.6. Let f ∈ c0, λi ≥ 0 and 0 <
∞∑

i=1
λi ≤ 1. Then

∞∑
i=1
λi f (i) ∈ co( f ).

Proof. Put λ =
∞∑

i=1
λi. We consider two cases. If 0 ∈ co( f ), then

∞∑
i=1

λi f (i) =

∞∑
i=1

λi f (i) + (1 − λ)0 ∈ cco( f ) = co( f ).

But if 0 < co( f ), then co( f ) has one of the forms [a, 0) or(0, b], where a < 0 < b. If co( f ) = (0, b], then for all

i ∈N, we have 0 < f (i) ≤ b. This implies 0 <
∞∑

i=1
λi f (i) ≤

∞∑
i=1
λib ≤ b, i.e.,

∞∑
i=1
λi f (i) ∈ co( f ). Similarly, the result

follows for the case co( f ) = [a, 0).

In Lemma 2.6, if all the λi are equal to zero, then
∞∑

i=1
λi f (i) = 0, but it may be 0 < co( f ). For example suppose

that f = (1 , 1
2 ,

1
3 , . . .).

The previous lemma gives a different example of order preserver operators.

Example 2.7. Let (λi) be a sequence of nonnegative real numbers such that
∞∑

i=1
λi ≤ 1. Then the bounded linear

operator T : c0 → c0 defined by

Tx =

 ∞∑
i=1

λixi, x1, x2, x3, . . .

 , for x = (xi) ∈ c0

belongs to Pcm. To see this, suppose that f ≺c 1, for some f , 1 ∈ c0. Now in the case
∞∑

i=1
λi = 0, that is, for all i ∈ N,

λi = 0, then

co(T f ) = co{0, f (1), f (2), f (3), . . .},

which leads to
co(T f ) = co{0, f (1), f (2), . . .} ⊆ co{0, 1(1), 1(2), . . .} = co(T1).
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But whenever
∞∑

i=1
λi > 0, then by Lemma 2.6,

∞∑
i=1
λi f (i) ∈ co( f ), and so

co(T f ) = co

 ∞∑
i=1

λi f (i), f (1), f (2), f (3), . . .

 = co( f ).

This implies co(T f ) = co( f ) ⊆ co(1) = co(T1).

Now, in the next theorem, we obtain an important property of order preserving linear operators on c0, that
is, their rows belong to `1.

Theorem 2.8. For T ∈ Pcm, all rows of T lie in `1. Moreover for any fixed i ∈N, we have
∑
j∈N
|Te j(i)| ≤ ‖T‖.

Proof. Let i ∈N be fixed. For any j,n ∈N, we set δ j = sgn(Te j)(i) and xn =
n∑

j=1
δ je j ∈ c0. Then Txn =

n∑
j=1
δ jTe j,

which implies

(Txn)(i) =

n∑
j=1

δ j(Te j)(i) =

n∑
j=1

|(Te j)(i)|.

Since ‖xn‖ ≤ 1,we have
n∑

j=1
|(Te j)(i)| = (Txn)(i) = |(Txn)(i)| ≤ ‖T‖. Letting n→∞, this completes the proof.

Corollary 2.9. Let the bounded linear operator T : c0 → c0 be in Pcm. Then for j1, j2 ∈ N, where j1 , j2, we have
‖Te j1 − Te j2‖ = ‖T‖, independent of chosen j1, j2.

Proof. Let x ∈ c0, such that ‖x‖ ≤ 1. Then x ≺c e1 − e2, and since T ∈ Pcm, we have Tx ≺c Te1 − Te2. Remark
2.2 implies that ‖Tx‖ ≤ ‖Te1 − Te2‖, which follows that

‖T‖ = sup
‖x‖≤1
‖Tx‖ ≤ ‖Te1 − Te2‖.

On the other hand, ‖Te1 − Te2‖ = ‖T(e1 − e2)‖ ≤ ‖T‖. This completes the proof.

Remark 2.10. Note that for T ∈ Pcm and j1, j2 ∈N, as co(Te j1 ) = co(Te j2 ), the following equalities hold

inf
i∈N
{Te j1 (i)} = inf

i∈N
{Te j2 (i)}, sup

i∈N
{Te j1 (i)} = sup

i∈N
{Te j2 (i)}.

Hence both the values of inf
i∈N
{Te j(i)} and sup

i∈N
{Te j(i)} are independent of the choice of j ∈N. In what follows, for brevity

we denote them by a and b, respectively. That is, for T ∈ Pcm, there is a bounded real interval I, such that

co(Te j) = I,

for all j ∈N. Thus a = inf I, and b = sup I, for each T ∈ Pcm.

Lemma 2.11. Assume that T ∈ Pcm and i ∈N. Then

a ≤
∑
j∈I−

Te j(i) ≤ 0 ≤
∑
j∈I+

Te j(i) ≤ b, (2)

where

I+ = { j ∈N; Te j(i) > 0}, I− = { j ∈N; Te j(i) < 0}. (3)
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Proof. Let i ∈N, and F be a nonempty finite subset of I+. As co(
∑
j∈F

Te j) = co(Te j0 ), for j0 ∈N, we have

0 ≤
∑
j∈F

Te j(i) ∈ Im(
∑
j∈F

Te j) ⊆ co(
∑
j∈F

Te j).

Thus
0 ≤

∑
j∈F

Te j(i) ≤ sup
i∈N

Te j0 (i) = b.

Since the last inequality holds for all finite subset F ⊆ I+, we conclude that

0 ≤
∑
j∈I+

Te j(i) ≤ b.

The rest of the proof runs as before.

In what follows, we assume that I+ and I−, is defined as in (3).

Corollary 2.12. Let T ∈ Pcm. Then each row sums of T, lies in [a, b].

Proof. By adding both inequalities in (2), the assertion follows.

Theorem 2.13. Let T ∈ Pcm. Then ‖T‖ = ‖Te j‖, for all j ∈N.

Proof. It follows from Corollary 2.9, that for distinct j, j′ ∈N, we have

‖T‖ = ‖Te j − Te j′‖.

Also, as e j ∼c e j′ ,we have Te j ∼c Te j′ ,which follows that ‖Te j‖ = ‖Te j′‖, (Remark 2.2). Assume that α = ‖Te j‖,
for j ∈N, and ε > 0. As Te j ∈ c0, we have lim

i→∞
(Te j)(i) = 0, so there is k ∈N, such that for i > k, we have

|(Te j)(i)| < ε. (4)

On the other hand, Theorem 2.8 implies that the rows of T belong to `1, and so all the following sequences(
(Te j)(1)

)
j∈N

, . . . ,
(
(Te j)(k)

)
j∈N

,

converge to zero, and so there is k′ ∈N, such that for j′ > k′, we have

|(Te j′ )(1)| < ε, . . . , |(Te j′ )(k)| < ε. (5)

The relations (4) and (5) imply that, for j′ > k′, we have

|(Te j)(i) − (Te j′ )(i)| ≤ |(Te j)(i)| + |(Te j′ )(i)|

≤

{
|Te j)(i)| + ε if 1 ≤ i ≤ k,
ε + |(Te j′ )(i)| if i > k,

≤ α + ε,

for any i ∈N. Therefore for ε > 0, it follows that

‖T‖ = ‖Te j − Te j′‖ = sup
i∈N
|(Te j)(i) − (Te j′ )(i)| ≤ α + ε.

As ε > 0 is arbitrary, we have

‖T‖ = ‖Te j − Te j′‖ ≤ α.

Also, α = ‖Te j‖ ≤ ‖T‖. Therefore ‖T‖ = α = ‖Te j‖, for all j ∈N.
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Lemma 2.14. If T ∈ Pcm, and j0 ∈N, then 0 ∈ Im(Te j0 ).

Proof. Assume that j0, j1 ∈Nwith j0 , j1. If a = b = 0, then Te j0 = 0 and we are done. Otherwise, if a < 0 or
b > 0, then ‖Te j1‖ = max{b,−a} > 0.Now if ‖Te j1‖ = b > 0, then there is i0 ∈N such that Te j1 (i0) = b.Applying
Theorems 2.8 and 2.13, we can assert that b = |Te j1 (i0)| ≤

∑
j∈N |Te j(i0)| ≤ ‖T‖ = ‖Te j1‖ = b. The latter relation

yields |Te j(i0)| = 0 for all j , j1. Thus Te j0 (i0) = 0, which follows 0 ∈ Im(Te j0 ). In case ‖Te j1‖ = −a > 0, the
result follows by a similar argument.

Lemma 2.15. Let T ∈ Pcm and j ∈N. Then a, b ∈ Im(Te j) and co(Te j) = [a, b].

Proof. Remark 2.10 yields that co(Te j) = I,where I is a bounded real interval and a = inf I and b = sup I. The
zero at most can be a limit point of Im(Te j) and a ≤ 0 ≤ b. If a < 0, then a will not be a limit point of Im(Te j).
Since a = inf

i∈N
{Te j(i)}, we see that a ∈ Im(Te j). But if a = 0, then Lemma 2.14, yields a = 0 ∈ Im(Te j). For b, we

can use a similar argument.

Lemma 2.16. If T ∈ Pcm and a < 0 < b, then for any j1, j2 ∈N, where j1 , j2, we have

max
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= 1.

Proof. If j1, j2 ∈N ( j1 , j2), then obviously

max
i∈N

{1
a

Te j1 (i)
}

= max
i∈N

{1
b

Te j2 (i)
}

= 1. (6)

Now, assume that 0 < ε < 1 is arbitrary and we choose finite subset F ⊆N such that

∀i ∈Nr F,
∣∣∣∣∣1a Te j1 (i)

∣∣∣∣∣ < ε, (7)

such an F exists, because Te j1 ∈ c0.
Theorem 2.8 implies that for all i ∈ F,

∑
j∈N
|Te j(i)| < ∞. So there is a finite set G ⊆N such that

∀i ∈ F, ∀ j ∈Nr G,
∣∣∣∣∣1b Te j(i)

∣∣∣∣∣ < ε. (8)

Let j∗ ∈Nr G and j∗ , j1. Then for all i ∈N; if i ∈ F, then

1
a

Te j1 (i) +
1
b

Te j∗ (i) ≤ 1 + ε, (9)

and if i ∈Nr F, then

1
a

Te j1 (i) +
1
b

Te j∗ (i) ≤ ε + 1, (10)

Since 1
a Te j1 + 1

b Te j2 ∼c
1
a Te j1 + 1

b Te j∗ , the relations (9) and (10) follow that for all ε > 0 we have

sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j∗ (i)
}
≤ ε + 1,

since ε > 0 is arbitrary, we have

sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j∗ (i)
}
≤ 1. (11)
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On the other hand, (6) shows that there is i∗ ∈ N such that 1
a Te j1 (i∗) = 1. But ε < 1, thus (7) implies i∗ ∈ F

and by (8) we deduce that

1
a

Te j1 (i∗) +
1
b

Te j∗ (i∗) ≥ 1 − ε,

thus for all ε > 0,

sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j∗ (i)
}
≥ 1 − ε,

and hence

sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= sup
i∈N

{1
a

Te j1 (i) +
1
b

Te j∗ (i)
}
≥ 1,

the last inequality and (11) follow that sup
i∈N

{
1
a Te j1 (i) + 1

b Te j2 (i)
}

= 1.But one is not a limit point of Im
{

1
a Te j1 + 1

b Te j2

}
,

so 1 ∈ Im
{

1
a Te j1 + 1

b Te j2

}
, that is max

i∈N

{
1
a Te j1 (i) + 1

b Te j2 (i)
}

= 1.

Theorem 2.17. If T ∈ Pcm, and a < 0 < b, then for any i ∈N, we have

1
a

∑
j∈I−

Te j(i) +
1
b

∑
j∈I+

Te j(i) ≤ 1.

Proof. Let j1, j2 ∈N ( j1 , j2). If I+ = ∅, then by Lemma 2.11, we have

a ≤
∑
j∈I−

Te j(i) ≤ 0.

By multiplying 1
a to the latter inequalities, the assertion follows. Similar arguments apply to the case I− = ∅.

Now, suppose that I+ and I− are both nonempty. Then Theorem 2.8 yields∑
j∈I+

|Te j(i)| +
∑
j∈I−
|Te j(i)| =

∑
j∈N

|Te j(i)| < ∞,

that implies I+ and I− are countable. For F ⊆ I− and G ⊆ I+, where F and G are nonempty finite sets, since
1
a
∑

j∈F e j + 1
b
∑

j∈G e j ∼c
1
a e j1 + 1

b e j2 , it follows that

1
a

∑
j∈F

Te j +
1
b

∑
j∈G

Te j ∼c
1
a

Te j1 +
1
b

Te j2 .

According to Lemma 2.16 and the latter relation, we have

1
a

∑
j∈F

Te j(i) +
1
b

∑
j∈G

Te j(i) ≤ max
i∈N

{1
a

Te j1 (i) +
1
b

Te j2 (i)
}

= 1.

Since the latter inequality holds for any finite subsets F ⊆ I− and G ⊆ I+, we have
1
a

∑
j∈I−

Te j(i) + 1
b

∑
j∈I+

Te j(i) ≤ 1.

Corollary 2.18. Let T ∈ Pcm and consider the matrix form of T. Then the following conditions hold.

(i) If a < 0, then in any row which appears a, the other entries are equal to zero.
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(ii) If b > 0, then in any row which appears b, the other entries are equal to zero.

Proof. (i) In the matrix form of T, suppose that a < 0 and it appears in the row i ∈ I. If b = 0, then I+ = ∅ and
I− , ∅. According to Lemma 2.11, a ≤

∑
j∈I− Te j(i). Since Te j(i) ≤ 0, for each j ∈ I−, and one of them equals

a,we have
∑

j∈I− Te j(i) = a. Now, let j0 ∈ I− be such that Te j0 (i) = a. Thus

a =
∑
j∈I−
j, j0

Te j(i) + a,

and so Te j(i) = 0, for all j ∈ I− with j , j0.
Now if b > 0, then by Theorem 2.17, we have

∑
j∈I−

Te j(i)
a +

∑
j∈I+

Te j(i)
b ≤ 1. Since the elements of both series are

nonnegative and there is j0 ∈ I− such that Te j0 (i) = a, that is,
Te j0 (i)

a = 1,we conclude that for all j ∈N,where
j , j0, Te j(i) = 0.

The assertion (ii) follows by a similar argument.

Theorem 2.19. (Characterization theorem) Let T : c0 → c0 be a linear operator. Then T ∈ Pcm if and only if

(i) For any j ∈N, the value of min
i∈N

Te j(i) exists and independent of j is equal to a.

(ii) For any j ∈N, the value of max
i∈N

Te j(i) exists and independent of j is equal to b.

(iii) If a < 0 < b, we have 1
a

∑
j∈I−

Te j(i) + 1
b

∑
j∈I+

Te j(i) ≤ 1; if a < 0 = b, then we have
∑
j∈N

Te j(i) ≥ a, and if a = 0 < b,

then it implies
∑
j∈N

Te j(i) ≤ b,

where (Te j(i)) j∈N is an arbitrary row of the matrix representation of T.

Proof. If T ∈ Pcm, obviously the conditions (i)-(iii) are satisfied. So suppose that the conditions (i)-(iii) are
satisfied and a < 0 < b. Then (i), (ii) follow that in any column, the values a and b are appeared. So for j ∈ I,
there are i1, i2 ∈ I, such that Te j(i1) = a, Te j(i2) = b, and according to Corollary 2.18, (iii) implies that all of
the other entries of the rows i1, i2 are zero. That is, for all s ∈ I, where s , j, we have Tes(i1) = 0, Tes(i2) = 0.
Thus for, f ∈ c0 we have

T f (i1) =
∑
s∈N

Tes(i1) f (s) =
∑
s∈N
s, j

Tes(i1) f (s) + Te j(i1) f ( j) = a f ( j).

Similarly, T f (i2) = b f ( j). Thus for j ∈ N, we have a f ( j), b f ( j) ∈ Im(T f ), which implies co{a f , b f } ⊆ co(T f ).
For i ∈N, we have

(T f )(i) =
∑
j∈N

Te j(i) f ( j) =
∑
j∈I−

Te j(i) f ( j) +
∑
j∈I+

Te j(i) f ( j)

=
∑
j∈I−

Te j(i)
a a f ( j) +

∑
j∈I+

Te j(i)
b b f ( j)

∈ cco{a f , b f } = co{a f , b f }.

Hence i ∈N deduce that (T f )(i) ∈ co{a f , b f } and co(T f ) ⊆ co{a f , b f }. We thus prove that (i)-(iii) imply that
for all f ∈ c0, co(T f ) = co{a f , b f }. Now let f , 1 ∈ c0 and f ≺c 1. Thus

co(T f ) = co{a f , b f } ⊆ co{a1, b1} = co(T1),

that is T f ≺c T1. If a < 0 = b, then we need only consider the following two cases:
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(i) The operator T has a zero row, and so co(T f ) = co{a f , 0}.

(ii) The operator T has no zero row, and so co(T f ) = co(a f ).

But (i),(ii) follow that T ∈ Pcm. By a similar argument, the case a = 0 < b implies the assertion.

Now we investigate the operators T : c0 → c0 which for all f ∈ c0 satisfy the condition co(T f ) = co( f ).
Let Pecm be the set of such operators.

Some Properties of Pecm

• Pecm ⊆ Pcm.

• Any permutation lies in Pecm.

• If T1,T2 ∈ Pecm, then T1 ◦ T2 ∈ Pecm.

• If T ∈ Pecm, then for any constant λ , 1, λT < Pecm.
Proof. Let T ∈ Pecm and λ ∈ R such that λT ∈ Pecm. Since

λ[0, 1] = {λx ; x ∈ [0, 1]} = λco(ei) = λco(Tei) = co(λTei) = co(ei) = [0, 1],

we have λ = 1.�

• If T ∈ Pecm, then T is a positive operator (i.e. T f ≥ 0, for each f ≥ 0).
Proof. For any i, j ∈ N, we have Te j(i) ∈ Im(Te j) ⊆ co(Te j) = co(e j) = [0, 1]. Thus 0 ≤ Te j(i) ≤ 1. Now
suppose that f ∈ c0 and f ≥ 0. As for all i, j ∈ N, 0 ≤ Te j(i) and f ( j) ≥ 0, we have 0 ≤ (T f )(i) =∑
j∈N

Te j(i) f ( j). Since i ∈N is arbitrary, it follows that T f ≥ 0.�

Theorem 2.20. If T ∈ Pecm, then

(i) for all j ∈N, max
i∈N
{Te j(i)} = 1, min

i∈N
{Te j(i)} = 0.

(ii) if (Te j(i)) j∈N is the ith row of the matrix form of T, then
∑
j∈N

Te j(i) ≤ 1.

Proof. The definition of Pecm follows (i) and since T ∈ Pecm ⊆ Pcm, Theorem 2.19 and (i) imply (ii).

In the following example, we show that the conditions (i) and (ii) in Theorem 2.20 do not follow T ∈ Pecm.

Example 2.21. Let T : c0 → c0 be a bounded linear operator defined by

Tx = (0, x1, x2, x3, . . .), for x = (xi) ∈ c0.

Then for f = (1, 1
2 ,

1
4 ,

1
8 , . . .) ∈ c0, we have T f = (0, 1, 1

2 ,
1
4 , . . .). So, co(T f ) = [0, 1] , co( f ) = (0, 1], which leads to

T < Pecm. However, by Theorem 2.19, T ∈ Pcm.

Theorem 2.22. If T ∈ Pecm, then the matrix form of T has no zero row.

Proof. On the contrary, suppose that the matrix form of the operator T has a zero row. Thus, for all f ∈ c0,
0 ∈ Im(T f ) ⊆ co(T f ).On the other hand, there is f ∈ c0, such that f > 0, and 0 < co( f ).Hence co(T f ) , co( f )
which contradicts our assumption.

Remark 2.23. Example 2.21 shows that although Pecm ⊆ Pcm, but Pcm * Pecm. Also, Theorem 2.20 implies that any
row sum of the elements of Pecm belongs to [0, 1].
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