Filomat 31:15 (2017), 4979–4988 https://doi.org/10.2298/FIL1715979B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Characterization of Linear Preservers of Generalized Majorization on c₀

Ali Bayati Eshkaftaki^a, Noha Eftekhari^a

^aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, 88186-34141, Iran.

Abstract. In this work we investigate a natural preorder on c_0 , the Banach space of all real sequences tend to zero with the supremum norm, which is said to be "convex majorization". Some interesting properties of all bounded linear operators $T : c_0 \rightarrow c_0$, preserving the convex majorization, are given and we characterize such operators.

1. Introduction and Preliminaries

For any two vectors $x, y \in \mathbb{R}^n$, we say *x* is majorized by *y*, denoted by $x \prec y$, if

$$\sum_{i=1}^k x_i^{\downarrow} \leq \sum_{i=1}^k y_i^{\downarrow} \quad \text{(for } k = 1, \dots, n-1\text{)}$$

and

$$\sum_{i=1}^n x_i^{\downarrow} = \sum_{i=1}^n y_i^{\downarrow}.$$

Here $x_1^{\downarrow} \ge x_2^{\downarrow} \ge \cdots \ge x_n^{\downarrow}$ is the decreasing order of components of a vector x. There are several equivalent conditions of vector majorization. Hardy, Littlewood, and Polya in [4] proved that $x = (x_1, \dots, x_n) < y = (y_1, \dots, y_n)$ is equivalent to

$$\sum_{i=1}^n \phi(x_i) \le \sum_{i=1}^n \phi(y_i),$$

for all continuous convex function $\phi : \mathbb{R} \to \mathbb{R}$. In fact, the previous characterization shows that if x < y, then the set of the components of *x*, lies in the convex hull spanned by the components of *y*, i.e.,

$$co(x) \subseteq co(y).$$

(1)

²⁰¹⁰ Mathematics Subject Classification. Primary 47B37; Secondary 47B65, 47L25

Keywords. Generalized majorization, Convex equivalent, Order preserver, Permutation

Received: 22 August 2016; Accepted: 05 February 2017

Communicated by Dragan S. Djordjević

Research supported by Shahrekord University.

Email addresses: bayati.ali@sci.sku.ac.ir, a.bayati@math.iut.ac.ir (Ali Bayati Eshkaftaki), eftekharinoha@yahoo.com, eftekhari-n@sci.sku.ac.ir (Noha Eftekhari)

The topic of linear preservers is of interest to a large group of matrix theorists. For some references on this subject we refer the reader to [1-3, 5-8]. On the basis of (1), Khalooei et al. [5, 6], introduced the concept of left matrix majorization and determined all linear operator preserving left matrix majorization on \mathbb{R}^n .

Throughout this work, c_0 is the Banach space of all convergent real sequences tend to zero with the supremum norm. An element $f \in c_0$ can be represented by $\sum_{i \in \mathbb{N}} f(i)e_i$, where $e_i : \mathbb{N} \to \mathbb{R}$ is defined by $e_i(j) = \delta_{ij}$, the Kronecker delta. Let $T : c_0 \to c_0$, be a bounded linear operator. Then an easy computation shows that, T is represented by a matrix $(t_{ij})_{i,j \in \mathbb{N}}$ in the sense that

$$(Tf)(i) = \sum_{j \in \mathbb{N}} t_{ij} f(j), \text{ for } f \in c_0 \text{ and } i \in \mathbb{N},$$

where $t_{ij} = (Te_j)(i)$. To simplify notation, we can incorporate *T* to its matrix form $(t_{ij})_{i,j \in \mathbb{N}}$.

In the following of this paper, by using (1), the notion of the left matrix majorization is extended to c_0 . Then all of the bounded linear operators, preserving such a majorization, together with some important properties of them, are obtained and determined. We also investigate the linear operators $T : c_0 \rightarrow c_0$, which satisfy co(Tf) = co(f), for all $f \in c_0$. Then we prove that any row sum of them belongs to [0, 1].

2. Main Results

First, we define a preorder on c_0 , as the following.

Definition 2.1. Let $f, g \in c_0$. We say that f is convex majorized by g, and denoted by $f \prec_c g$, if $co(f) \subseteq co(g)$. Also, f is said to be convex equivalent to g, denoted by $f \sim_c g$, whenever $f \prec_c g \prec_c f$, i.e., co(f) = co(g), where co(f) means convex hull spanned by the components of f.

Remark 2.2. For $f, g \in c_0$, some consequences of the previous definition are as follows.

- If $f \prec_c g$, then $||f|| \le ||g||$.
- $f \prec_c g$, iff $\lambda f \prec_c \lambda g$, for all $\lambda \in \mathbb{R}$, iff $f \prec_c ng$, for all $n \in \mathbb{N}$.
- If $n f \prec_c g$, for each $n \in \mathbb{N}$, then f = 0.

Definition 2.3. A bounded linear operator $T : c_0 \to c_0$ is said to be order preserving, if T preserves \prec_c , that is, for $f, g \in c_0$, the relation $f \prec_c g$ implies $Tf \prec_c Tg$. The set of all such operators is denoted by \mathcal{P}_{cm} .

One of the concepts, appears in the study of order preserver operators, is the generalization of the concept of convex combination, which appears in [2].

Definition 2.4. *Let* $(X, \|.\|)$ *be a normed linear space and* $A \subseteq X$ *. The countable convex hull of* A*, denoted by* cco(A)*, is defined to be the set*

$$\left\{\sum_{i=1}^{\infty}\lambda_{i}x_{i}; x_{i} \in A, \lambda_{i} \geq 0, \sum_{i=1}^{\infty}\lambda_{i} = 1, \sum_{i=1}^{\infty}\lambda_{i}x_{i} \text{ converges}\right\}.$$

The following assertions come from [2].

- $co(A) \subseteq cco(A) \subseteq \overline{co(A)}$, so cco(A) is a convex set.
- If *X* is a Banach space and $A \subseteq X$ is bounded, then in the definition of cco(A), $\sum_{i=1}^{\infty} \lambda_i x_i$ is always a convergent series.
- If $A \subseteq \mathbb{R}$, then cco(A) = co(A).

It can be proved that, for $f \in c_0$ if $0 \in co(f)$, then co(f) = [a, b], for some $a, b \in \mathbb{R}$ with $a \le 0 \le b$, and if $0 \notin co(f)$, then co(f) is equal to either an interval [a, 0), for some a < 0, or (0, b], for some b > 0.

In this section, we characterize all linear operators $T : c_0 \rightarrow c_0$ which preserve \prec_c .

Some elementary properties of \mathcal{P}_{cm}

- 0, id $\in \mathcal{P}_{cm}$.
- If $T_1, T_2 \in \mathcal{P}_{cm}$, then $T_1 \circ T_2 \in \mathcal{P}_{cm}$. In particular, $\lambda T \in \mathcal{P}_{cm}$ for $\lambda \in \mathbb{R}$ and $T \in \mathcal{P}_{cm}$.
- Any constant coefficient of a permutation lies in \mathcal{P}_{cm} .

Example 2.5. Let $a, b \in \mathbb{R}$ and $S : c_0 \rightarrow c_0$ be defined by

$$Sf = (af_1, bf_1, af_2, bf_2, \dots),$$

for $f = (f_1, f_2, ...) \in c_0$. It is obvious that $S \in \mathcal{P}_{cm}$. In general case, let (n_k) be a sequence of natural numbers. Then the bounded linear operator $T : c_0 \rightarrow c_0$, defined by

$$Tf = (\underbrace{af_1, \dots, af_1}_{n_1}, \underbrace{bf_1, \dots, bf_1}_{n_2}, \underbrace{af_2, \dots, af_2}_{n_3}, \underbrace{bf_2, \dots, bf_2}_{n_4}, \underbrace{af_3, \dots, af_3}_{n_5}, \underbrace{bf_3, \dots, bf_3}_{n_6}, \dots)$$

for $f = (f_1, f_2, ...) \in c_0$, belongs to \mathcal{P}_{cm} .

Lemma 2.6. Let $f \in c_0$, $\lambda_i \ge 0$ and $0 < \sum_{i=1}^{\infty} \lambda_i \le 1$. Then $\sum_{i=1}^{\infty} \lambda_i f(i) \in co(f)$.

Proof. Put $\lambda = \sum_{i=1}^{\infty} \lambda_i$. We consider two cases. If $0 \in co(f)$, then

$$\sum_{i=1}^{\infty} \lambda_i f(i) = \sum_{i=1}^{\infty} \lambda_i f(i) + (1-\lambda)0 \in \operatorname{cco}(f) = \operatorname{co}(f).$$

But if $0 \notin co(f)$, then co(f) has one of the forms $[a, 0) \operatorname{or}(0, b]$, where a < 0 < b. If co(f) = (0, b], then for all $i \in \mathbb{N}$, we have $0 < f(i) \le b$. This implies $0 < \sum_{i=1}^{\infty} \lambda_i f(i) \le \sum_{i=1}^{\infty} \lambda_i b \le b$, i.e., $\sum_{i=1}^{\infty} \lambda_i f(i) \in co(f)$. Similarly, the result follows for the case co(f) = [a, 0). \Box

In Lemma 2.6, if all the λ_i are equal to zero, then $\sum_{i=1}^{\infty} \lambda_i f(i) = 0$, but it may be $0 \notin co(f)$. For example suppose that $f = (1, \frac{1}{2}, \frac{1}{3}, ...)$. The previous lemma gives a different example of order preserver operators.

Example 2.7. Let (λ_i) be a sequence of nonnegative real numbers such that $\sum_{i=1}^{\infty} \lambda_i \leq 1$. Then the bounded linear operator $T: c_0 \rightarrow c_0$ defined by

$$Tx = \left(\sum_{i=1}^{\infty} \lambda_i x_i, x_1, x_2, x_3, \ldots\right), \quad for \ x = (x_i) \in c_0$$

belongs to \mathcal{P}_{cm} . To see this, suppose that $f \prec_c g$, for some $f, g \in c_0$. Now in the case $\sum_{i=1}^{\infty} \lambda_i = 0$, that is, for all $i \in \mathbb{N}$, $\lambda_i = 0$, then

 $co(Tf) = co\{0, f(1), f(2), f(3), \ldots\},\$

which leads to

$$co(Tf) = co\{0, f(1), f(2), \ldots\} \subseteq co\{0, g(1), g(2), \ldots\} = co(Tg).$$

But whenever $\sum_{i=1}^{\infty} \lambda_i > 0$, then by Lemma 2.6, $\sum_{i=1}^{\infty} \lambda_i f(i) \in co(f)$, and so

$$co(Tf) = co\left\{\sum_{i=1}^{\infty} \lambda_i f(i), f(1), f(2), f(3), \ldots\right\} = co(f)$$

This implies $co(Tf) = co(f) \subseteq co(g) = co(Tg)$.

Now, in the next theorem, we obtain an important property of order preserving linear operators on c_0 , that is, their rows belong to ℓ^1 .

Theorem 2.8. For $T \in \mathcal{P}_{cm}$, all rows of T lie in ℓ^1 . Moreover for any fixed $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}} |Te_j(i)| \le ||T||$.

Proof. Let $i \in \mathbb{N}$ be fixed. For any $j, n \in \mathbb{N}$, we set $\delta_j = \operatorname{sgn}(Te_j)(i)$ and $x_n = \sum_{j=1}^n \delta_j e_j \in c_0$. Then $Tx_n = \sum_{j=1}^n \delta_j Te_j$, which implies

$$(Tx_n)(i) = \sum_{j=1}^n \delta_j(Te_j)(i) = \sum_{j=1}^n |(Te_j)(i)|.$$

Since $||x_n|| \le 1$, we have $\sum_{j=1}^n |(Te_j)(i)| = (Tx_n)(i) = |(Tx_n)(i)| \le ||T||$. Letting $n \to \infty$, this completes the proof. \Box

Corollary 2.9. Let the bounded linear operator $T : c_0 \to c_0$ be in \mathcal{P}_{cm} . Then for $j_1, j_2 \in \mathbb{N}$, where $j_1 \neq j_2$, we have $||Te_{j_1} - Te_{j_2}|| = ||T||$, independent of chosen j_1, j_2 .

Proof. Let $x \in c_0$, such that $||x|| \le 1$. Then $x \prec_c e_1 - e_2$, and since $T \in \mathcal{P}_{cm}$, we have $Tx \prec_c Te_1 - Te_2$. Remark 2.2 implies that $||Tx|| \le ||Te_1 - Te_2||$, which follows that

$$||T|| = \sup_{||x|| \le 1} ||Tx|| \le ||Te_1 - Te_2||$$

On the other hand, $||Te_1 - Te_2|| = ||T(e_1 - e_2)|| \le ||T||$. This completes the proof. \Box

Remark 2.10. Note that for $T \in \mathcal{P}_{cm}$ and $j_1, j_2 \in \mathbb{N}$, as $co(Te_{j_1}) = co(Te_{j_2})$, the following equalities hold

$$\inf_{i \in \mathbb{N}} \{ Te_{j_1}(i) \} = \inf_{i \in \mathbb{N}} \{ Te_{j_2}(i) \}, \quad \sup_{i \in \mathbb{N}} \{ Te_{j_1}(i) \} = \sup_{i \in \mathbb{N}} \{ Te_{j_2}(i) \}.$$

Hence both the values of $\inf_{i \in \mathbb{N}} \{Te_j(i)\}$ *and* $\sup_{i \in \mathbb{N}} \{Te_j(i)\}$ *are independent of the choice of* $j \in \mathbb{N}$. *In what follows, for brevity we denote them by a and b, respectively. That is, for* $T \in \mathcal{P}_{cm}$, *there is a bounded real interval I, such that*

 $co(Te_i) = I$,

for all $j \in \mathbb{N}$. Thus $a = \inf I$, and $b = \sup I$, for each $T \in \mathcal{P}_{cm}$.

Lemma 2.11. Assume that $T \in \mathcal{P}_{cm}$ and $i \in \mathbb{N}$. Then

$$a \le \sum_{j \in I^-} Te_j(i) \le 0 \le \sum_{j \in I^+} Te_j(i) \le b,$$
(2)

where

$$I^{+} = \{ j \in \mathbb{N}; \ Te_{j}(i) > 0 \}, \ I^{-} = \{ j \in \mathbb{N}; \ Te_{j}(i) < 0 \}.$$
(3)

4982

Proof. Let $i \in \mathbb{N}$, and F be a nonempty finite subset of I^+ . As $co(\sum_{j \in F} Te_j) = co(Te_{j_0})$, for $j_0 \in \mathbb{N}$, we have

$$0 \leq \sum_{j \in F} Te_j(i) \in \operatorname{Im}(\sum_{j \in F} Te_j) \subseteq \operatorname{co}(\sum_{j \in F} Te_j).$$

Thus

$$0 \leq \sum_{j \in F} Te_j(i) \leq \sup_{i \in \mathbb{N}} Te_{j_0}(i) = b.$$

Since the last inequality holds for all finite subset $F \subseteq I^+$, we conclude that

$$0 \le \sum_{j \in I^+} Te_j(i) \le b.$$

The rest of the proof runs as before. \Box

In what follows, we assume that I^+ and I^- , is defined as in (3).

Corollary 2.12. Let $T \in \mathcal{P}_{cm}$. Then each row sums of T, lies in [a, b].

Proof. By adding both inequalities in (2), the assertion follows. \Box

Theorem 2.13. Let $T \in \mathcal{P}_{cm}$. Then $||T|| = ||Te_j||$, for all $j \in \mathbb{N}$.

Proof. It follows from Corollary 2.9, that for distinct $j, j' \in \mathbb{N}$, we have

$$||T|| = ||Te_j - Te_{j'}||.$$

Also, as $e_j \sim_c e_{j'}$, we have $Te_j \sim_c Te_{j'}$, which follows that $||Te_j|| = ||Te_{j'}||$, (Remark 2.2). Assume that $\alpha = ||Te_j||$, for $j \in \mathbb{N}$, and $\varepsilon > 0$. As $Te_j \in c_0$, we have $\lim_{k \to \infty} (Te_j)(i) = 0$, so there is $k \in \mathbb{N}$, such that for i > k, we have

$$|(Te_i)(i)| < \varepsilon.$$

On the other hand, Theorem 2.8 implies that the rows of *T* belong to ℓ^1 , and so all the following sequences

$$((Te_j)(1))_{j\in\mathbb{N}},\ldots,((Te_j)(k))_{j\in\mathbb{N}}$$

converge to zero, and so there is $k' \in \mathbb{N}$, such that for j' > k', we have

$$|(Te_{j'})(1)| < \varepsilon, \dots, |(Te_{j'})(k)| < \varepsilon.$$

$$(5)$$

The relations (4) and (5) imply that, for j' > k', we have

$$\begin{split} |(Te_j)(i) - (Te_{j'})(i)| &\leq |(Te_j)(i)| + |(Te_{j'})(i)| \\ &\leq \begin{cases} |Te_j)(i)| + \varepsilon & \text{if } 1 \leq i \leq k, \\ \varepsilon + |(Te_{j'})(i)| & \text{if } i > k, \\ &\leq \alpha + \varepsilon, \end{cases} \end{split}$$

for any $i \in \mathbb{N}$. Therefore for $\varepsilon > 0$, it follows that

$$||T|| = ||Te_j - Te_{j'}|| = \sup_{i \in \mathbb{N}} |(Te_j)(i) - (Te_{j'})(i)| \le \alpha + \varepsilon.$$

As $\varepsilon > 0$ is arbitrary, we have

$$||T|| = ||Te_i - Te_{i'}|| \le \alpha.$$

Also, $\alpha = ||Te_j|| \le ||T||$. Therefore $||T|| = \alpha = ||Te_j||$, for all $j \in \mathbb{N}$. \Box

4983

(4)

Lemma 2.14. If $T \in \mathcal{P}_{cm}$, and $j_0 \in \mathbb{N}$, then $0 \in \text{Im}(Te_{j_0})$.

Proof. Assume that $j_0, j_1 \in \mathbb{N}$ with $j_0 \neq j_1$. If a = b = 0, then $Te_{j_0} = 0$ and we are done. Otherwise, if a < 0 or b > 0, then $||Te_{j_1}|| = \max\{b, -a\} > 0$. Now if $||Te_{j_1}|| = b > 0$, then there is $i_0 \in \mathbb{N}$ such that $Te_{j_1}(i_0) = b$. Applying Theorems 2.8 and 2.13, we can assert that $b = |Te_{j_1}(i_0)| \le \sum_{j \in \mathbb{N}} |Te_j(i_0)| \le ||T|| = ||Te_{j_1}|| = b$. The latter relation yields $|Te_i(i_0)| = 0$ for all $j \neq j_1$. Thus $Te_{i_0}(i_0) = 0$, which follows $0 \in \text{Im}(Te_{i_0})$. In case $||Te_{i_1}|| = -a > 0$, the result follows by a similar argument. \Box

Lemma 2.15. Let $T \in \mathcal{P}_{cm}$ and $j \in \mathbb{N}$. Then $a, b \in \text{Im}(Te_j)$ and $\text{co}(Te_j) = [a, b]$.

Proof. Remark 2.10 yields that $co(Te_i) = I$, where I is a bounded real interval and $a = \inf I$ and $b = \sup I$. The zero at most can be a limit point of $\text{Im}(Te_i)$ and $a \le 0 \le b$. If a < 0, then a will not be a limit point of $\text{Im}(Te_i)$. Since $a = \inf_{i \in \mathbb{N}} \{Te_j(i)\}\)$, we see that $a \in \text{Im}(Te_j)$. But if a = 0, then Lemma 2.14, yields $a = 0 \in \text{Im}(Te_j)$. For b, we can use a similar argument.

Lemma 2.16. If $T \in \mathcal{P}_{cm}$ and a < 0 < b, then for any $j_1, j_2 \in \mathbb{N}$, where $j_1 \neq j_2$, we have

$$\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j_2}(i) \right\} = 1.$$

Proof. If $j_1, j_2 \in \mathbb{N}$ $(j_1 \neq j_2)$, then obviously

$$\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) \right\} = \max_{i \in \mathbb{N}} \left\{ \frac{1}{b} T e_{j_2}(i) \right\} = 1.$$
(6)

Now, assume that $0 < \varepsilon < 1$ is arbitrary and we choose finite subset $F \subseteq \mathbb{N}$ such that

$$\forall i \in \mathbb{N} \smallsetminus F, \qquad \left| \frac{1}{a} T e_{j_1}(i) \right| < \varepsilon, \tag{7}$$

such an *F* exists, because $Te_{j_1} \in c_0$. Theorem 2.8 implies that for all $i \in F$, $\sum_{j \in \mathbb{N}} |Te_j(i)| < \infty$. So there is a finite set $G \subseteq \mathbb{N}$ such that

$$\forall i \in F, \quad \forall j \in \mathbb{N} \smallsetminus G, \qquad \left| \frac{1}{b} T e_j(i) \right| < \varepsilon.$$
(8)

Let $j^* \in \mathbb{N} \setminus G$ and $j^* \neq j_1$. Then for all $i \in \mathbb{N}$; if $i \in F$, then

$$\frac{1}{a}Te_{j_1}(i) + \frac{1}{b}Te_{j^*}(i) \le 1 + \varepsilon,$$
(9)

and if $i \in \mathbb{N} \setminus F$, then

$$\frac{1}{a}Te_{j_1}(i) + \frac{1}{b}Te_{j^*}(i) \le \varepsilon + 1,$$
(10)

Since $\frac{1}{a}Te_{j_1} + \frac{1}{b}Te_{j_2} \sim_c \frac{1}{a}Te_{j_1} + \frac{1}{b}Te_{j_2}$, the relations (9) and (10) follow that for all $\varepsilon > 0$ we have

$$\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}Te_{j_1}(i)+\frac{1}{b}Te_{j_2}(i)\right\}=\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}Te_{j_1}(i)+\frac{1}{b}Te_{j^*}(i)\right\}\leq\varepsilon+1,$$

since $\varepsilon > 0$ is arbitrary, we have

$$\sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j_2}(i) \right\} = \sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j^*}(i) \right\} \le 1.$$
(11)

On the other hand, (6) shows that there is $i^* \in \mathbb{N}$ such that $\frac{1}{a}Te_{j_1}(i^*) = 1$. But $\varepsilon < 1$, thus (7) implies $i^* \in F$ and by (8) we deduce that

$$\frac{1}{a}Te_{j_1}(i^*)+\frac{1}{b}Te_{j^*}(i^*)\geq 1-\varepsilon,$$

thus for all $\varepsilon > 0$,

$$\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}Te_{j_{1}}(i)+\frac{1}{b}Te_{j_{2}}(i)\right\}=\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}Te_{j_{1}}(i)+\frac{1}{b}Te_{j^{*}}(i)\right\}\geq 1-\varepsilon,$$

and hence

$$\sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j_2}(i) \right\} = \sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j^*}(i) \right\} \ge 1,$$

the last inequality and (11) follow that $\sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j_2}(i) \right\} = 1.$ But one is not a limit point of $\operatorname{Im}\left\{ \frac{1}{a} T e_{j_1} + \frac{1}{b} T e_{j_2} \right\}$, so $1 \in \operatorname{Im}\left\{ \frac{1}{a} T e_{j_1} + \frac{1}{b} T e_{j_2} \right\}$, that is $\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} T e_{j_1}(i) + \frac{1}{b} T e_{j_2}(i) \right\} = 1.$

Theorem 2.17. If $T \in \mathcal{P}_{cm}$, and a < 0 < b, then for any $i \in \mathbb{N}$, we have

$$\frac{1}{a}\sum_{j\in I^-} Te_j(i) + \frac{1}{b}\sum_{j\in I^+} Te_j(i) \le 1.$$

Proof. Let $j_1, j_2 \in \mathbb{N}$ $(j_1 \neq j_2)$. If $I^+ = \emptyset$, then by Lemma 2.11, we have

$$a \leq \sum_{j \in I^-} Te_j(i) \leq 0$$

By multiplying $\frac{1}{a}$ to the latter inequalities, the assertion follows. Similar arguments apply to the case $I^- = \emptyset$. Now, suppose that I^+ and I^- are both nonempty. Then Theorem 2.8 yields

$$\sum_{j\in I^+} |Te_j(i)| + \sum_{j\in I^-} |Te_j(i)| = \sum_{j\in \mathbb{N}} |Te_j(i)| < \infty,$$

that implies I^+ and I^- are countable. For $F \subseteq I^-$ and $G \subseteq I^+$, where F and G are nonempty finite sets, since $\frac{1}{a} \sum_{j \in F} e_j + \frac{1}{b} \sum_{j \in G} e_j \sim_c \frac{1}{a} e_{j_1} + \frac{1}{b} e_{j_2}$, it follows that

$$\frac{1}{a}\sum_{j\in F}Te_j+\frac{1}{b}\sum_{j\in G}Te_j\sim_c \frac{1}{a}Te_{j_1}+\frac{1}{b}Te_{j_2}.$$

According to Lemma 2.16 and the latter relation, we have

$$\frac{1}{a} \sum_{j \in F} Te_j(i) + \frac{1}{b} \sum_{j \in G} Te_j(i) \le \max_{i \in \mathbb{N}} \left\{ \frac{1}{a} Te_{j_1}(i) + \frac{1}{b} Te_{j_2}(i) \right\} = 1.$$

Since the latter inequality holds for any finite subsets $F \subseteq I^-$ and $G \subseteq I^+$, we have $\frac{1}{a} \sum_{i \in I^-} Te_i(i) + \frac{1}{b} \sum_{i \in I^+} Te_i(i) \le 1$. \Box

Corollary 2.18. Let $T \in \mathcal{P}_{cm}$ and consider the matrix form of T. Then the following conditions hold.

(i) If a < 0, then in any row which appears a, the other entries are equal to zero.

(ii) If b > 0, then in any row which appears b, the other entries are equal to zero.

Proof. (i) In the matrix form of *T*, suppose that a < 0 and it appears in the row $i \in I$. If b = 0, then $I^+ = \emptyset$ and $I^- \neq \emptyset$. According to Lemma 2.11, $a \leq \sum_{j \in I^-} Te_j(i)$. Since $Te_j(i) \leq 0$, for each $j \in I^-$, and one of them equals *a*, we have $\sum_{j \in I^-} Te_j(i) = a$. Now, let $j_0 \in I^-$ be such that $Te_{j_0}(i) = a$. Thus

$$a = \sum_{\substack{j \in I^- \\ j \neq j_0}} Te_j(i) + a,$$

and so $Te_j(i) = 0$, for all $j \in I^-$ with $j \neq j_0$.

Now if b > 0, then by Theorem 2.17, we have $\sum_{j \in I^-} \frac{Te_j(i)}{a} + \sum_{j \in I^+} \frac{Te_j(i)}{b} \le 1$. Since the elements of both series are nonnegative and there is $j_0 \in I^-$ such that $Te_{j_0}(i) = a$, that is, $\frac{Te_{j_0}(i)}{a} = 1$, we conclude that for all $j \in \mathbb{N}$, where $j \neq j_0$, $Te_j(i) = 0$.

The assertion (ii) follows by a similar argument. \Box

Theorem 2.19. (*Characterization theorem*) Let $T : c_0 \to c_0$ be a linear operator. Then $T \in \mathcal{P}_{cm}$ if and only if

- (i) For any $j \in \mathbb{N}$, the value of $\min_{i \in \mathbb{N}} Te_j(i)$ exists and independent of j is equal to a.
- (ii) For any $j \in \mathbb{N}$, the value of $\max_{i \in \mathbb{N}} Te_j(i)$ exists and independent of j is equal to b.
- (iii) If a < 0 < b, we have $\frac{1}{a} \sum_{j \in I^-} Te_j(i) + \frac{1}{b} \sum_{j \in I^+} Te_j(i) \le 1$; if a < 0 = b, then we have $\sum_{j \in \mathbb{N}} Te_j(i) \ge a$, and if a = 0 < b, then it implies $\sum_{j \in \mathbb{N}} Te_j(i) \le b$,

where $(Te_i(i))_{i \in \mathbb{N}}$ is an arbitrary row of the matrix representation of *T*.

Proof. If $T \in \mathcal{P}_{cm}$, obviously the conditions (i)-(iii) are satisfied. So suppose that the conditions (i)-(iii) are satisfied and a < 0 < b. Then (i), (ii) follow that in any column, the values a and b are appeared. So for $j \in I$, there are $i_1, i_2 \in I$, such that $Te_j(i_1) = a$, $Te_j(i_2) = b$, and according to Corollary 2.18, (iii) implies that all of the other entries of the rows i_1, i_2 are zero. That is, for all $s \in I$, where $s \neq j$, we have $Te_s(i_1) = 0$, $Te_s(i_2) = 0$. Thus for, $f \in c_0$ we have

$$Tf(i_1) = \sum_{s \in \mathbb{N}} Te_s(i_1)f(s) = \sum_{\substack{s \in \mathbb{N} \\ s \neq j}} Te_s(i_1)f(s) + Te_j(i_1)f(j) = af(j).$$

Similarly, $Tf(i_2) = bf(j)$. Thus for $j \in \mathbb{N}$, we have $af(j), bf(j) \in \text{Im}(Tf)$, which implies $co\{af, bf\} \subseteq co(Tf)$. For $i \in \mathbb{N}$, we have

$$(Tf)(i) = \sum_{j \in \mathbb{N}} Te_j(i)f(j) = \sum_{j \in I^-} Te_j(i)f(j) + \sum_{j \in I^+} Te_j(i)f(j)$$
$$= \sum_{j \in I^-} \frac{Te_j(i)}{a}af(j) + \sum_{j \in I^+} \frac{Te_j(i)}{b}bf(j)$$
$$\in \operatorname{cco}\{af, bf\} = \operatorname{co}\{af, bf\}.$$

Hence $i \in \mathbb{N}$ deduce that $(Tf)(i) \in co\{af, bf\}$ and $co(Tf) \subseteq co\{af, bf\}$. We thus prove that (i)-(iii) imply that for all $f \in c_0$, $co(Tf) = co\{af, bf\}$. Now let $f, g \in c_0$ and $f \prec_c g$. Thus

$$co(Tf) = co\{af, bf\} \subseteq co\{ag, bg\} = co(Tg),$$

that is $Tf \prec_c Tg$. If a < 0 = b, then we need only consider the following two cases:

- (i) The operator *T* has a zero row, and so $co(Tf) = co\{af, 0\}$.
- (ii) The operator *T* has no zero row, and so co(Tf) = co(af).

But (i),(ii) follow that $T \in \mathcal{P}_{cm}$. By a similar argument, the case a = 0 < b implies the assertion.

Now we investigate the operators $T : c_0 \to c_0$ which for all $f \in c_0$ satisfy the condition co(Tf) = co(f). Let \mathcal{P}_{ecm} be the set of such operators.

Some Properties of \mathcal{P}_{ecm}

- $\mathcal{P}_{ecm} \subseteq \mathcal{P}_{cm}$.
- Any permutation lies in \mathcal{P}_{ecm} .
- If $T_1, T_2 \in \mathcal{P}_{ecm}$, then $T_1 \circ T_2 \in \mathcal{P}_{ecm}$.
- If $T \in \mathcal{P}_{ecm}$, then for any constant $\lambda \neq 1$, $\lambda T \notin \mathcal{P}_{ecm}$. **Proof**. Let $T \in \mathcal{P}_{ecm}$ and $\lambda \in \mathbb{R}$ such that $\lambda T \in \mathcal{P}_{ecm}$. Since

$$\lambda[0,1] = \{\lambda x ; x \in [0,1]\} = \lambda co(e_i) = \lambda co(Te_i) = co(\lambda Te_i) = co(e_i) = [0,1],$$

we have $\lambda = 1.\Box$

• If $T \in \mathcal{P}_{ecm}$, then *T* is a positive operator (i.e. $Tf \ge 0$, for each $f \ge 0$). **Proof**. For any $i, j \in \mathbb{N}$, we have $Te_j(i) \in \text{Im}(Te_j) \subseteq \text{co}(Te_j) = \text{co}(e_j) = [0, 1]$. Thus $0 \le Te_j(i) \le 1$. Now suppose that $f \in c_0$ and $f \ge 0$. As for all $i, j \in \mathbb{N}$, $0 \le Te_j(i)$ and $f(j) \ge 0$, we have $0 \le (Tf)(i) = \sum_{j \in \mathbb{N}} Te_j(i)f(j)$. Since $i \in \mathbb{N}$ is arbitrary, it follows that $Tf \ge 0.\square$

Theorem 2.20. *If* $T \in \mathcal{P}_{ecm}$ *, then*

- (i) for all $j \in \mathbb{N}$, $\max_{i \in \mathbb{N}} \{Te_j(i)\} = 1$, $\min_{i \in \mathbb{N}} \{Te_j(i)\} = 0$.
- (ii) if $(Te_j(i))_{j \in \mathbb{N}}$ is the *i*th row of the matrix form of *T*, then $\sum_{j \in \mathbb{N}} Te_j(i) \le 1$.

Proof. The definition of \mathcal{P}_{ecm} follows (i) and since $T \in \mathcal{P}_{ecm} \subseteq \mathcal{P}_{cm}$, Theorem 2.19 and (i) imply (ii).

In the following example, we show that the conditions (i) and (ii) in Theorem 2.20 do not follow $T \in \mathcal{P}_{ecm}$.

Example 2.21. Let $T : c_0 \rightarrow c_0$ be a bounded linear operator defined by

 $Tx = (0, x_1, x_2, x_3, \ldots), \quad for \ x = (x_i) \in c_0.$

Then for $f = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...) \in c_0$, we have $Tf = (0, 1, \frac{1}{2}, \frac{1}{4}, ...)$. So, $co(Tf) = [0, 1] \neq co(f) = (0, 1]$, which leads to $T \notin \mathcal{P}_{ecm}$. However, by Theorem 2.19, $T \in \mathcal{P}_{cm}$.

Theorem 2.22. If $T \in \mathcal{P}_{ecm}$, then the matrix form of T has no zero row.

Proof. On the contrary, suppose that the matrix form of the operator *T* has a zero row. Thus, for all $f \in c_0$, $0 \in \text{Im}(Tf) \subseteq \text{co}(Tf)$. On the other hand, there is $f \in c_0$, such that f > 0, and $0 \notin \text{co}(f)$. Hence $\text{co}(Tf) \neq \text{co}(f)$ which contradicts our assumption. \Box

Remark 2.23. *Example 2.21 shows that although* $\mathcal{P}_{ecm} \subseteq \mathcal{P}_{cm}$ *, but* $\mathcal{P}_{cm} \not\subseteq \mathcal{P}_{ecm}$ *. Also, Theorem 2.20 implies that any row sum of the elements of* \mathcal{P}_{ecm} *belongs to* [0, 1]*.*

Acknowledgments The authors would like to thank Shahrekord University for financial support.

References

- F. Bahrami, A. Bayati Eshkaftaki, S. M. Manjegani, Linear preservers of majorization on l^p(I), Linear Algebra and its Applications 436 (2012) 3177–3195.
- [2] A. Bayati Eshkaftaki, N. Eftekhari, Convex majorization on discrete l^p spaces, Linear Algebra and its Applications 474 (2015) 124–140.
- [3] N. Eftekhari, A. Bayati Eshkaftaki, Isotonic linear operators on the space of all convergent real sequences, Linear Algebra and its Applications 506 (2016) 535–550.
- [4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, (2nd edition), London and New York, Cambridge University Press, 1952.
- [5] F. Khalooei, M. Radjabalipour, P. Torabian, Linear preservers of left matrix majorization, Electronic Journal of Linear Algebra 17 (2008) 304–315.
- [6] F. Khalooei, A. Salemi, The structure of linear preservers of left matrix majorizations on \mathbb{R}^p , Electronic Journal of Linear Algebra 18 (2009) 88–97.
- [7] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities; Theory of Majorization and Its Applications, (2nd edition), Springer, NewYork, 2011.
- [8] S. Pierce, A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) Nos. 1-2.