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Fixed Point of Single-Valued Cyclic Weak ¢r—Contraction Mappings

Sirous Moradi®

?Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.

Abstract. Fixed point results are presented for single-valued cyclic weakly gr—contractive mappings on
complete metric spaces (X, d), where ¢ : [0, +00) — [0, +0) is a function with ¢~(0) = {0}, (t) < t for all
t > 0and @(t,) — 0impliest, — 0,and F : [0, +00) —> [0, +0) is continuous with F1(0) = {0} and F(t,) — 0
implies t, — 0. Our results extend previous results given by Rhoades (2001)[20], Moradi and Beiranvand
(2010)[13], Amini-Harandi (2010)[2] and Karapinar (2011)[11].

1. Introduction

Let (X, d) be a metric space. A mapping T : X — X is said to be a ¢—weak contraction if there exists a
map @[0, +c0) — [0, +o0) with ¢~1(0) = {0} such that

d(Tx, Ty) < d(x,y) — p(d(x,y)) (1)

forall x,y € X.

The concept of the p—weak contraction was defined by Alber and Guerre-Delabriere [1] in 1977. Rhoades
[20, Theorem 2] proved the following fixed point theorem for ¢—weak contraction single-valued mappings,
giving another generalization of the Banach contraction principle.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X — X be a mapping such that
d(Tx, Ty) < d(x, y) — p(d(x, y)) (2)

forall x,y € X(i.e. it is p—weakly contractive), where ¢[0,+0c0) — [0, +00) is a continuous and nondecreasing
function with ¢~(0) = {0}. Then, T has a unique fixed point.

By choosing 1(t) = t — ¢(t), p—weak contractions become mappings of Boyd and Wong type [4], and on

defining k(t) = FTW) for t > 0 and k(0) = 0, then p—weak contractions become mappings of Reich [21].
In fixed point theory, p—weak contraction has been studied by many authors, see for example [6], [11]-[18],
[22, 23], and the references therein.

In (2010) Amini-Harandi [2] proved the following theorem on the existence of a fixed point for a single-
valued mapping.
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Theorem 1.2. Let (X, d) be a complete metric space and let T : X — X be a mapping satisfies
d(Tx, Ty) < P(d(x, y)) (3)

for each x,y € X, where P[0, +o0) —> [0, +00) is upper semicontinuous, P(t) < t for each t > 0 and satisfies
liminf, o (f — Y(¢)) > 0. Then, T has a fixed point.

In (2010) Pdcurar [19] presented the following definitions.

Definition 1.3. Let X be a non-empty set, m a positive integer and T : X — X an operator. By definition, X = U, X;
is a cyclic representation on X with respect to T if

@D X;,i=1,.., mare non-empty sets;
(2) T(Xy) € Xp, T(X3) C X3, ..., T(Xi—1) € X, T(Xi) € X3.

Definition 1.4. Let (X, d) be a metric space, m a positive integer, A1, As, ..., Ay closed non-empty subsets of X and
Y = U A Anoperator T : Y — Y'is called a cyclic weak p—contraction if

(1) U, A;is a cyclic representation of Y with respect to T, and

(2) there exists a continuous, non-decreasing function ¢ : [0, +00) — [0, +00) with ¢(t) > 0 for t > 0 and ¢(0) = 0,
such that

d(Tx, Ty) < d(x,y) — p(d(x, y)) @)
forany x € Aj,y € Ai1,i=1,2,...,m, where Ayy1 = Ay

Recently, Karapinar [11] proved the following theorem on the existence of fixed point for cyclic weak
@—contraction mappings.

Theorem 1.5. Let (X,d) be a complete metric space, m € IN, A1, Ay, ..., A closed non-empty subsets of X and
Y = UL Ai. Let T2 Y — Y be a cyclic weak ¢p— contractive mapping, where [0, +00) —> [0, +00) with ¢(t) > 0 is
a continuous function for t € (0, +00), and ¢p(0) = 0. Then, T has a unique fixed point z € (21 A.

There are another results on the existence of fixed point for cyclic mappings, see for example [3], [7], [8], [9]
and [10].
In Section 3, we extend Rhoades, Moradi and Beiranvand, Amini-Harandi and Karapinar’ results.

2. Preliminaries

In this work, (X,d) denote a complete metric space. We introduce the notation ¥ for all continuous
mappings F : [0, +00) —> [0, +00) with F~1(0) = {0}, and satisfies the following condition:

F(t,) — 0 implies t, — 0. ®)

Let W be the class of all nondecreasing mapping ¢ : [0, +c0) —> [0, +00) with ¢1(0) = {0} and ¥(¢) < ¢ for
allt> 0.

Also we introduce the notation @ for all mappings ¢ : [0, +o0) — [0, +00) with ¢~1(0) = {0} and ¢(¢) < ¢ for
all t > 0 and satisfies the following condition:

@(t,) — 0 implies t, — 0. (6)

Obviously W c ®. Also, every Ls.c. mapping ¢ : [0, +c0) —> [0, +o0) with ¢~1(0) = {0}, ¢(t) < t for all t > 0
and liminf;_,., @(t) > 0 belong to ®.
At last, suppose Q be the class of all mappings ¢ : [0, +00) — [0, +00) with ¢~1(0) = {0} and satisfies the
following condition:
"for every interval [a, b] C (0, +00), there exists a € (0,1) such that t — ¢(t) < at for all ¢ € [a,b].”

In Section 3 we show that ® C Q.
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Definition 2.1. Let (X, d) be a metric space, m a positive integer, A1, Aa, ..., Ay closed non-empty subsets of X and
Y = U A Anoperator T : Y — Yis called a cyclic weak pr—contraction if

(1) U, A;is a cyclic representation of Y with respect to T, and

(2) there exist two mappings ¢, F : [0, +00) — [0, +00) with F71(0) = ¢71(0) = {0} and ¢(t) < t for all t > 0 such
that

F(d(Tx, Ty)) < F(d(x, y)) — @(Fd(x, y))) (7)

foranyx € Aj,y € Aix1,1=1,2,...,m, where A, = Ay

3. Main Results
At first we prove the following useful lemma.

Lemma 3.1. Let ¢ € @. Then for every closed interval [a, b] C (0, +o0) there exists a € (0,1) such that
t—q(t) < at 8)
forallt € [a,b].

Proof. Suppose for every a € (0,1) there exists t € [a,b] such that t — ¢(t) > at. Hence for a sequence
{anly, € (0,1) with lim, . a, = 1, there exists a sequence {t,},”, C [a,b] such that t, — ¢(t,) > ant,, for
all n € N. Therefore, 0 < ¢(t,) < (1 — ap)t,, for all n € IN. Since lim, o, = 1 and {t,}}7, C [a,b],
lim, (1 — ay)t, = 0. Therefore, lim,. @(t,) = 0. Since ¢ € @, then lim,,»t, = 0 and this is a

contradiction. [

The following theorem extends Rhoades [20], Amini-Harandi [2], Karapinar [11], Moradi and Beiranvand
[13] and Branciari’s results [5].

Theorem 3.2. Let (X,d) be a complete metric space, m € IN, A1, Az, ..., An closed non-empty subsets of X and
Y = UL, Ai. Suppose that p € Qand F € F. Let T : Y — Y be a cyclic weak ¢pp— contractive mapping. Then, T
has a unique fixed point x € (2, Ai.

Proof. Letx; € Y, and set x,41 = Tx, for all n € IN. We may assume that x; € A;. Notice that for any #, there
exists i, € {1,2,--- ,m} such that x, € A;, and x,,41 € Aj,+1. SO X1 € A1, X0 € Ay, , Xy € A, X1 € A1, X €
Ag, e Xom € Ay Xome1 € Ay, oo
At first we show that limd(x,+1, x,) = 0. Using (6), for alln € N

n—oo

F(d(xn42, Xn41)) < F(d(Xn11, X)) — (P(F(d(an/ Xn)))- )

So the sequence {F(d(x,+1,x»))} is monotone nonincreasing and bounded below. Hence, there exists r > 0
such that

lim F(d(Xp41, X)) = 7 (10)

If r > 0, then there exists ¢ > 0 such that » — ¢ > 0. From (10), there exists Ny € IN such that for all n > Nj,
Fd(xp41,x4)) € [r — €,7 + €]. Since ¢ € Q, there exists a € (0, 1) such that

t—q(t) < at (11)
forallt € [r — ¢, + €]. Hence for all n > Ny, from (9)

F(d(xn+2, Xn41)) < aF(d(xp41, Xn))- (12)
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Since F € ¥, letting n — oo in (12) we get F(r) < aF(r). Since a € (0,1), then F(r) = 0 and hence r = 0. So
from F € ¥ and (10) we conclude that

lim d(x,41, x,) = 0. (13)
n—oo

Using triangular inequality and above inequality
lmd(x,41,%,) = 0, (14)

foralll €{1,2,---,m}.

Now we show that {x,} is a Cauchy sequence.

Suppose that {x,} is not Cauchy. So there exists a > 0 and sequence {n(k)} such that n(k + 1) > n(k) is minimal
in the sense that d(x,+1), Xu)) > a. Obviously, n(k) > k for all k € N. Using (13), there exists Ny € IN such
that for all k > Ny, d(xx41,xx) > 5. So for all k > Ny, n(k + 1) — n(k) > 2 and

a A(X (k1) Xn(r)
A (kr1), Xnges1)-1) + AXnges1)-1, Xnck))

A(Xnger1ys Xnges1)-1) + 4. (15)

ININ A

Letting k — oo in above inequality, we get
Limd(@gesry, Xu) = a. (16)

Suppose that m(1) = n(1),m(2) = n(2) + I, where I € {0,1,--- ,m — 1} such that m(2) = m(1) + 1(mod m),
m(3) = n(3), m(4) = n(4) + Iy, where Iy € {0,1,--- ,m — 1} such that m(4) = m(3) + 1(mod m), ---, m(2k — 1) =
n(2k — 1), m(2k) = n(2k) + Iy, where Iy, € {0,1,--- ,m — 1} such that m(2k) = m(2k — 1) + 1(mod m) and - - - .
For allk € N

a A(Xn2k), Xn2k-1))

A(Xn(2K), Xn@ky+1y) + AXn@k) s Xn(2k-1))

IAN A

A(Xn(2k), Xn@ky+1y) + AXmk), Xm@k-1))
2d(xXur), Xn(@2ky+1y) + A(Xn(2k), Xn@k-1))- (17)

IA

Using (14), (16) and above inequality, we conclude that

%LI?od(xm(Zk)rxm(Zkfl)) =a. (18)
Since F € ¥ and (18) holds, then

%I_P;F (d(xXm(r), Xm(x-1))) = F(a). (19)

Also,

d(xm(zk)/ Xm(zk—l)) < d(xm(Zk)rxm(Zk)—l) + d(xm(zk)—lz xm(2k—1)—1) + d(xm(Zk—l)—lr xm(Zk—l))
< 2d(Xmexy, Xme-1) + A(Xmeky, Xmek-1)) + 24(XnEk-1)-1, XmEk-1))- (20

From (13), (18) and above inequality
I}i_)rgd(xmak)—l/xm(zk—l)—l) =a. (21)
Hence,

;}LD;F (d(XmeEn-1, Xmer-1)-1)) = F(a). (22)
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From (6) and m(2k) = m(2k — 1) + 1(mod m) for all k € IN, we have
F(d(Xm@p), Xmer-1))) < F(AXm@0-1, Xmer-1)-1)) = QE@(Xm@-1, Xm@k-1)-1)))- (23)
If F(a) > 0 then for some ¢ > 0, F(a) — ¢ > 0. From (19) and (20), there exists Ny € IN such that for all n > Ny,
F(d(xmny, Xm@k-1)))s F(dXmei-1, Xmex-1)-1)) € [F(a) — €, F(a) + €]. Since ¢ € Q, there exists a € (0, 1) such that
t—p() <at (24)
for all t € [F(a) — ¢,F(a) + €]. Hence for all k > Ny, from (23)

F(d(Xm@r), Xmek-1))) < aF(dXn@k)-1, Xm@k-1)-1))- (25)

Letting k — oo in above inequality, we get, F(a) < aF(a). Since a € (0,1), then F(a) = 0 and hence a = 0 and
this is a contradiction.

Therefore {x,} is Cauchy.

Since (X, d) is complete and {x,} is Cauchy, there exists x € X such that ,}1_%10 X, = x. From gi_I)l;onnm_H = X,

{Xum+i : m € N} C A; and A; is closed, we conclude that x € A; fori =1,2,--- ,m. Therefore x € NI, A;.
For all n € N, from (6) and x € (2, A;

Fd(xn+1,Tx)) = F(d(Txy, Tx))
< F(d(xn, %)) = ¢(F(d(xn, X)))
< F(d(xy, x)). (26)
Letting n — oo in above inequality, we get
F(d(x, Tx)) < aF(d(x,x)) = 0. (27)

Therefore F(d(x, Tx)) = 0. So d(x, Tx) = 0 and hence, Tx = x. Thus T has a fixed point x € (i, A;.
Uniqueness of the fixed point in (iZ; A; follows from (8) and this completes the proof. [J

Remark 3.3. By taking A1 = Ay = --- = Ay, = X and define ¢(t) = t — Y(t), we can generalized Theorem 1.2.

Theorem 3.4. Let T : Y — Y be a mapping as in Theorem 3.1 and F(t) = t. Then the fixed point problem for T is
well-posed, that is, if there exists a sequence {y,} in Y with imd(y,, Ty,) = 0, then limy, = x (x is fixed point of T

inx e it A
Proof. Since x € (12, A; and y, € Y, from (6)

A(Yn, %) < d(Yn, Tyn) + d(Tyn, TX) < d(Yn, Tyn) + d(Yn, %) = @(d(Yn, X)), (28)
Therefore 31_{1010 @(d(yn, x)) = 0. Since ¢ € O, then 31_{210 d(yn, x) = 0 and this completes the proof. [

Theorem 3.5. Let T : Y — Y be a mapping as in Theorem 3.1 and F(t) = t. Then T has the limit shadowing property,
that is, if there exists a convergent sequence {y,} in Y with imd(y,+1, Ty,) = 0, then there exists x € Y such that
n—oo

limd(y,, T"x) = 0.

n—oo

Proof. Letx € (NiZ; A; be the fixed point of T. With a method similar to that in Theorem 3.3 we can conclude
this theorem. [

The following theorem is a direct result of Theorem 3.2, where extends Theorem 1.2.

Theorem 3.6. Let (X, d) be a complete metric space and let T : X — X be a mapping satisfies

F(d(Tx, Ty)) < (F(d(x, ) (29)

forall x,y € X, where F € ¥ and ¢ : [0, +00) — [0, +00) is upper semi-continuous with Y(t) < t for all t > 0 and
satisfies im inf,_,oo(t — 1P(t)) > 0. Then T has a unique fixed point.
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Proof. Let ¢(t) =t — ¢(t) and apply Theorem 3.2. [J
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