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Abstract. In this paper, using Bregman functions, we introduce a new Halpern-type iterative algorithm
for finding common zeros of finitely many maximal monotone operators and obtain a strongly convergent
iterative sequence to the common zeros of these operators in a reflexive Banach space. Furthermore,
we study Halpern-type iterative schemes for finding common solutions of a finite system of equilibrium
problems and null spaces of a γ-inverse strongly monotone mapping in a 2-uniformly convex Banach
space. Some applications of our results to the solution of equations of Hammerstein-type are presented.
Our scheme has an advantage that we do not use any projection of a point on the intersection of closed and
convex sets which creates some difficulties in a practical calculation of the iterative sequence. So the simple
construction of Halpern iteration provides more flexibility in defining the algorithm parameters which is
important from the numerical implementation perspective. Presented results improve and generalize many
known results in the current literature.

1. Introduction

In this paper, we investigate the problem of finding zeros of mappings A : E→ 2E∗ ; that is, find x ∈ domA
such that

0∗ ∈ Ax. (1.1)

The domain of a mapping A is defined by the set {x ∈ E : Ax , Ø}, where E is a Banach space.
Constructing iterative algorithms to approximate zeros of maximal monotone operators is a very active

topic in pure and applied mathematics. The proximal point method (see [54]) is among the main tools
for finding zeros of maximal monotone operators in Hilbert spaces. However, it was shown in [54]
that the iterative sequence converges weakly but not strongly (see also [27]). To get the result of strong
convergence, Kamimura and Takahashi [32] proposed a modified proximal point algorithm and obtained
a strongly convergent iterative sequence to the zeros of a maximal monotone operator in a Hilbert space
(see also [9, 21, 59]). On the other hand, the equilibrium problem, introduced by Blum and Oettli [10] in
1994, has been attracting a growing attention of researchers; see, e.g., [43, 44] and the references therein.
Numerous problems in physics, optimization, and economics reduce to find a solution of the equilibrium
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problem. In order to approximate the solution to this problem, various types of iterative schemes have been
proposed (see [8, 30, 31, 52, 58, 62]). Throughout this paper, we denote the set of real numbers and the set
of positive integers byR andN, respectively. Let E be a Banach space with the norm ‖.‖ and the dual space
E∗. For any x ∈ E, we denote the value of x∗ ∈ E∗ at x by 〈x, x∗〉. Let {xn}n∈N be a sequence in E, we denote
the strong convergence of {xn}n∈N to x ∈ E as n→ ∞ by xn → x and the weak convergence by xn ⇀ x. The
modulus δ of convexity of E is denoted by

δ(ε) = inf
{

1 −
‖x + y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if δ(ε) > 0 for every ε > 0. Let
SE = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable if for each x, y ∈ SE, the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.2)

exists. In this case, E is called smooth. If the limit (1.2) is attained uniformly for all x, y ∈ SE, then E is called
uniformly smooth. The Banach space E is said to be strictly convex if ‖ x+y

2 ‖ < 1 whenever x, y ∈ SE and x , y.
It is well known that E is uniformly convex if and only if E∗ is uniformly smooth. It is also known that if E
is reflexive, then E is strictly convex if and only if E∗ is smooth; for more details, see [60, 61].
Let C be a nonempty subset of a Banach space E. Let T : C → E be a mapping. We denote the set of
fixed points of T by F(T), i.e., F(T) = {x ∈ C : Tx = x}. A mapping T : C → E is said to be nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping T : C → E is said to be quasi-nonexpansive if F(T) , ∅ and
‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F(T). A point p ∈ C is said to be an asymptotic fixed point [48] of T if
there exists a sequence {xn}n∈N in C which converges weakly to p and limn→∞ ‖xn − Txn‖ = 0. We denote the
set of all asymptotic fixed points of T by F̂(T).

In recent years, several types of iterative schemes have been constructed and proved in order to get strong
convergence results for nonexpansive mappings in various settings. The concept of nonexpansivity plays
an important role in the study of Halpern-type iteration for finding fixed points of a mapping T : C → C.
Recall that the Halpern iteration is given by

u ∈ C, x1 ∈ C chosen arbitrarily,
yn = (1 − βn)xn + βnTxn,
xn+1 = αnu + (1 − αn)yn,

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. The construction of fixed
points of nonexpansive mappings via Halpern’s algorithm [28] has been extensively investigated recently
in the current literature (see, for example, [47] and the references therein). Numerous results have been
proved on Halpern’s iterations for nonexpansive mappings in Hilbert and Banach spaces. Because of a
simple construction, Halpern’s iterations are widely used to approximate a solution of fixed points for
nonexpansive mappings and other classes of nonlinear mappings by many authors in different styles (see,
e.g., [1, 35, 40, 63, 64]).

1.1. Some facts about gradients
For any convex function 1 : E → (−∞,+∞] we denote the domain of 1 by dom 1 = {x ∈ E : 1(x) < ∞}.

For any x ∈ int dom 1 and any y ∈ E, we denote by 1o(x, y) the right-hand derivative of 1 at x in the direction
y, that is,

1o(x, y) = lim
t↓0

1(x + ty) − 1(x)
t

. (1.3)

The function 1 is said to be Gâteaux differentiable at x if limt→0
1(x+ty)−1(x)

t exists for any y. In this case 1o(x, y)
coincides with ∇1(x), the value of the gradient ∇1 of 1 at x. The function 1 is said to be Gâteaux differentiable
if it is Gâteaux differentiable everywhere. The function 1 is said to be Fréchet differentiable at x if this limit is
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attained uniformly in ‖y‖ = 1. The function 1 is said to be Fréchet differentiable if it is Fréchet differentiable
everywhere. It is well known that if a continuous convex function 1 : E→ R is Gâteaux differentiable, then
∇1 is norm-to-weak∗ continuous (see, for example, [16](Proposition 1.1.10)). Also, it is known that if 1 is
Fréchet differentiable, then ∇1 is norm-to-norm continuous (see, [34](p. 508)). The function 1 is said to be
strongly coercive if

lim
‖xn‖→∞

1(xn)
‖xn‖

= ∞.

It is also said to be bounded on bounded subsets of E if 1(U) is bounded for each bounded subset U of E. Finally,
1 is said to be uniformly Fréchet differentiable on a subset X of E if the limit (1.3) is attained uniformly for all
x ∈ X and ‖y‖ = 1.

Let A : E → 2E∗ be a set-valued mapping. We define the domain and range of A by dom A = {x ∈ E :
Ax , Ø} and ran A = ∪x∈EAx, respectively. The graph of A is denoted by G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}.
The mapping A ⊂ E×E∗ is said to be monotone [54] if 〈x− y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It is also
said to be maximal monotone [55] if its graph is not contained in the graph of any other monotone operator
on E. If A ⊂ E × E∗ is maximal monotone, then we can show that the set A−10 = {z ∈ E : 0 ∈ Az} is closed
and convex. A mapping A : dom A ⊂ E→ E∗ is called γ-inverse strongly monotone if there exists a positive
real number γ such that for all x, y ∈ dom A, 〈x − y,Ax − Ay〉 ≥ γ‖Ax − Ay‖2.

1.2. Some facts about Legendre functions
Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex function 1 : E →

(−∞,+∞], the conjugate function 1∗ of 1 is defined by

1∗(x∗) = sup
x∈E
{〈x, x∗〉 − 1(x)}

for all x∗ ∈ E∗. It is well known that 1(x) + 1∗(x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ E × E∗. It is also known that
(x, x∗) ∈ ∂1 is equivalent to

1(x) + 1∗(x∗) = 〈x, x∗〉. (1.4)

Here, ∂1 is the subdifferential of 1 [56, 57]. We also know that if 1 : E → (−∞,+∞] is a proper, lower
semicontinuous and convex function, then 1∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower semicontinuous
and convex function; see [61] for more details on convex analysis.

Let 1 : E→ (−∞,+∞] be a mapping. The function 1 is said to be:
(i) essentially smooth, if ∂1 is both locally bounded and single-valued on its domain.
(ii) essentially strictly convex, if (∂1)−1 is locally bounded on its domain and 1 is strictly convex on every
convex subset of dom ∂1.
(iii) Legendre, if it is both essentially smooth and essentially strictly convex (for more details, we refer to
[5](Definition 5.2)).

If E is a reflexive Banach space and 1 : E→ (−∞,+∞] is a Legendre function, then in view of [11](p. 83)

∇1∗ = (∇1)−1, ran ∇1 = dom 1∗ = int dom 1∗, and ran ∇1 = int dom 1.

Examples of Legendre functions are given in [4, 5]. One important and interesting Legendre function is
1
s ‖.‖

s (1 < s < ∞), where the Banach space E is smooth and strictly convex and, in particular, a Hilbert space.

1.3. Some facts about Bregman distances
Let E be a Banach space and let E∗ be the dual space of E. Let 1 : E → R be a convex and Gâteaux

differentiable function. Then the Bregman distance [13, 19] corresponding to 1 is the function D1 : E×E→ R
defined by

D1(x, y) = 1(x) − 1(y) − 〈x − y,∇1(y)〉, ∀x, y ∈ E. (1.5)

It is clear that D1(x, y) ≥ 0 for all x, y ∈ E. In that case when E is a smooth Banach space, setting 1(x) = ‖x‖2

for all x ∈ E, we obtain that ∇1(x) = 2Jx for all x ∈ E and hence D1(x, y) = φ(x, y) for all x, y ∈ E.
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Let E be a Banach space and let C be a nonempty and convex subset of E. Let 1 : E → R be a
convex and Gâteaux differentiable function. Then, we know from [38] that for x ∈ E and x0 ∈ C,
D1(x0, x) = miny∈C D1(y, x) if and only if

〈y − x0,∇1(x) − ∇1(x0)〉 ≤ 0, ∀y ∈ C. (1.6)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E and 1 : E→ R is a
strongly coercive Bregman function, then for each x ∈ E, there exists a unique x0 ∈ C such that

D1(x0, x) = min
y∈C

D1(y, x).

The Bregman projection proj1C from E onto C is defined by proj1C(x) = x0 for all x ∈ E. It is also well known
that proj1C has the following property:

D1
(
y,proj1Cx

)
+ D1

(
proj1Cx, x

)
≤ D1(y, x) (1.7)

for all y ∈ C and x ∈ E (see [16] for more details).

1.4. Some facts about uniformly convex and totally convex functions
Let E be a Banach space and let Bs := {z ∈ E : ‖z‖ ≤ s} for all s > 0. Then a function 1 : E → R is

said to be uniformly convex on bounded subsets of E ([66](pp. 203, 221)) if ρs(t) > 0 for all s, t > 0, where
ρs : [0,+∞)→ [0,∞] is defined by

ρs(t) = inf
x,y∈Bs,‖x−y‖=t,α∈(0,1)

α1(x) + (1 − α)1(y) − 1(αx + (1 − α)y)
α(1 − α)

(1.8)

for all t ≥ 0. The function ρs is called the gauge of uniform convexity of 1. The function 1 is also said
to be uniformly smooth on bounded subsets of E ([66](pp. 207, 221)) if limt↓0

σs(t)
t = 0 for all s > 0, where

σs : [0,+∞)→ [0,∞] is defined by

σs(t) = sup
x∈Bs,y∈SE,α∈(0,1)

α1(x + (1 − α)ty) + (1 − α)1(x − αty) − 1(x)
α(1 − α)

for all t ≥ 0. The function 1 is said to be uniformly convex if the function δ1 : [0,+∞)→ [0,+∞], defined by

δ1(t) := sup
{1

2
1(x) +

1
2
1(y) − 1

(x + y
2

)
: ‖y − x‖ = t

}
,

satisfies that limt↓0
δ1(t)

t = 0.
Let 1 : E→ (−∞,+∞] be a convex and Gâteaux differentiable function. Recall that, in view of [16](Section

1.2, p. 17) (see also [15]), the function 1 is called totally convex at a point x ∈ int dom 1 if its modulus of total
convexity at x, that is, the function v1 : int dom 1 × [0,+∞)→ [0,+∞) defined by

v1(x, t) := inf
{
D1(y, x) : y ∈ int dom 1, ‖y − x‖ = t

}
,

is positive whenever t > 0. The function 1 is called totally convex when it is totally convex at every point
x ∈ int dom 1. Moreover, the function f is called totally convex on bounded subsets of E if v1(x, t) > 0 for any
bounded subset X of E and for any t > 0, where the modulus of total convexity of the function 1 on the set X is
the function v1 : int dom 1 × [0,+∞)→ [0,+∞) defined by

v1(X, t) := inf
{
v1(x, t) : x ∈ X ∩ int dom 1

}
.
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It is well known that any uniformly convex function is totally convex, but the converse is not true in general
(see [16](Section 1.3, p. 30)).
It is also well known that 1 is totally convex on bounded subsets if and only if 1 is uniformly convex on
bounded subsets (see [18](Theorem 2.10, p. 9)).
Examples of totally convex functions can be found, for instance, in [16–18].

1.5. Some facts about resolvents
Let E be a reflexive Banach space with the dual space E∗ and let 1 : E → (−∞,+∞] be a proper, lower

semicontinuous and convex function. Let A be a maximal monotone operator from E to E∗. For any r > 0,
let the mapping Res1rA : E→ dom A be defined by

Res1rA = (∇1 + rA)−1
∇1.

The mapping Res1rA is called the 1-resolvent of A (see [6]). It is well known that A−1(0) = F
(
Res1rA

)
for each

r > 0 (for more details, see, for example [60]).
Examples and some important properties of such operators are discussed in [12].

1.6. Some facts about Bregman quasi-nonexpansive mappings
Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let 1 : E→ (−∞,+∞] be a

proper, lower semicontinuous and convex function. Recall that a mapping T : C→ C is said to be Bregman
quasi-nonexpansive [51], if F(T) , Ø and

D1(p,Tx) ≤ D1(p, x), ∀x ∈ C, p ∈ F(T).

A mapping T : C → C is said to be Bregman relatively nonexpansive [51] if the following conditions are
satisfied:
(1) F(T) is nonempty;
(2) D1(p,Tv) ≤ D1(p, v), ∀p ∈ F(T), v ∈ C;
(3) F̂(T) = F(T).

Recently, Sabach [58] proved the following two strong convergence theorems for the products of finitely
many resolvents of maximal monotone operators in a reflexive Banach space.

Theorem 1.1. Let E be a reflexive Banach space and let Ai : E → 2E∗ , i = 1, 2, ...,N, be N maximal monotone
operators such that Z := ∩N

i=1A−1
i (0∗) , Ø. Let 1 : E→ R be a Legendre function that is bounded, uniformly Fréchet

differentiable, and totally convex on bounded subsets of E. Let {xn}n∈N be a sequence defined by the following iterative
algorithm 

x0 ∈ E chosen arbitrarily,
yn = Res1

λN
n AN

...Res1
λ1

nA1
(xn + en),

Cn = {z ∈ E : D1(z, yn) ≤ D1(z, xn + en)},
Qn = {z ∈ E : 〈z − xn,∇1(x0) − ∇1(xn)〉 ≤ 0},
xn+1 = proj1Cn∩Qn

x0 and n ∈N ∪ {0},

(1.9)

If, for each i = 1, 2, ...,N, lim infn→∞ λi
n > 0, and the sequences of errors {ei

n}n∈N ⊂ E satisfy lim infn→∞ ei
n = 0, then

each such sequence {xn}n∈N converges strongly to proj1Z(x0) as n→∞.

Theorem 1.2. Let E be a reflexive Banach space and let Ai : E → 2E∗ , i = 1, 2, ...,N, be N maximal monotone
operators such that Z := ∩N

i=1A−1
i (0∗) , Ø. Let 1 : E→ R be a Legendre function that is bounded, uniformly Fréchet

differentiable, and totally convex on bounded subsets of E. Let {xn}n∈N be a sequence defined by the following iterative
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algorithm 

x0 ∈ E chosen arbitrarily,
H0 = E,
yn = Res1

λN
n AN

...Res1
λ1

nA1
(xn + en),

Hn+1 = {z ∈ Hn : D1(z, yn) ≤ D1(z, xn + en)},
xn+1 = proj1Hn+1

x0 and n ∈N ∪ {0},

(1.10)

If, for each i = 1, 2, ...,N, lim infn→∞ λi
n > 0, and the sequences of errors {ei

n}n∈N ⊂ E satisfy lim infn→∞ ei
n = 0, then

each such sequence {xn}n∈N converges strongly to proj1Z(x0) as n→∞.

The theory of fixed points with respect to Bregman distances has been studied in the last ten years and
much intensively in the last four years. In [7], Bauschke and Combettes introduced an iterative method
to construct the Bregman projection of a point onto a countable intersection of closed and convex sets
in reflexive Banach spaces. They proved strong convergence theorem of the sequence produced by their
method; for more detail see [42, Theorem 4.7]. In [49], Reich and Sabach introduced a proximal method for
finding common zeros of finitely many maximal monotone operators in a reflexive Banach space. Then they
proved that the sequence produced by their method converges strongly to a common zeros of finitely many
maximal monotone operators. In [50], Reich and Sabach introduced a Mann type process to approximate
fixed points of quasi Bregman firmly nonexpansive mappings defined on a nonempty, closed and convex
subset C of a reflexive Banach space E. Then they proved that the sequence {xn}n∈N produced by their
method converges strongly to a common fixed point of finitely many quasi Bregman firmly nonexpansive
mappings. In [52], Reich and Sabach introduced iterative algorithms for finding common fixed points
of finitely many Bregman strongly nonexpansive operators in a reflexive Banach space. For some recent
articles on the existence of fixed points for Bregman nonexpansive type mappings, we refer the readers to
[4–7, 11, 12, 14, 15, 20, 30, 37, 46, 49–53, 58].

Remark 1.1. Though the iteration processes (1.9)-(1.10) and the algorithms in [50–52], as introduced by the
authors mentioned above worked, it is easy to see that these processes seem cumbersome and complicated
in the sense that at each stage of iteration, two different sets Cn and Qn are computed and the next iterate
taken as the Bregman projection of x0 on the intersection of Cn and Qn. This seems difficult in real world
application.

But it is worth mentioning that, in all the above results for Bregman nonexpansive type mappings, the
computation of closed and convex sets Cn and Qn for each n ∈ N are required. So, the following question
arises naturally in a Banach space setting.

Question 1.1. Is it possible to obtain strong convergence of modified Halpern’s type schemes to the common zeros
of finitely many maximal monotone operators without using the Bregman projection of a point on the intersection of
closed and convex sets?

In this paper, using Bregman functions, we introduce a new Halpern-type iterative algorithm for finding
common zeros of finitely many maximal monotone operators and obtain a strongly convergent iterative
sequence to the common zeros of these mappings in a reflexive Banach space. First, we consider disadvan-
tages of the iterative sequences in known results. Namely, Bregman projections are not always available in a
practical calculation. We attempt to improve these schemes and, by combining them with iterative method
of the Halpern type, we obtain a new type of strong convergence theorem, which overcomes the drawbacks
of the previous results. Next, we study Halpern-type iterative schemes for finding common solutions
of an equilibrium problem and null spaces of a γ-inverse strongly monotone mapping in a 2-uniformly
convex Banach space. Some application of our results to the solution of equations of Hammerstein-type is
presented. The computations of closed and convex sets Cn and Qn for each n ∈N are not required. Conse-
quently, the above question is answered in the affirmative in a reflexive Banach space setting. Our results
improve and generalize many known results in the current literature; see, for example, [7, 8, 12, 49–53].
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2. Preliminaries

In this section, we begin by recalling some preliminaries and lemmas which will be used in the sequel.
The following definition is slightly different from that in Butnariu and Iusem [16].

Definition 2.1 ([34]). Let E be a Banach space. The function 1 : E → R is said to be a Bregman function if
the following conditions are satisfied:
(1) 1 is continuous, strictly convex and Gâteaux differentiable;
(2) the set {y ∈ E : D1(x, y) ≤ r} is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [16] and Zălinscu [66].

Lemma 2.1. Let E be a reflexive Banach space and 1 : E→ R a strongly coercive Bregman function. Then

(1) ∇1 : E→ E∗ is one-to-one, onto and norm-to-weak∗ continuous;
(2) 〈x − y,∇1(x) − ∇1(y)〉 = 0 if and only if x = y;
(3) {x ∈ E : D1(x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(4) dom 1∗ = E∗, 1∗ is Gâteaux differentiable and ∇1∗ = (∇1)−1.

We know the following two results; see [66].

Theorem 2.1. Let E be a reflexive Banach space and 1 : E → R a convex function which is bounded on bounded
subsets of E. Then the following assertions are equivalent:
(1) 1 is strongly coercive and uniformly convex on bounded subsets of E;
(2) dom 1∗ = E∗, 1∗ is bounded on bounded subsets and uniformly smooth on bounded subsets of E∗;
(3) dom 1∗ = E∗, 1∗ is Fréchet differentiable and ∇1∗ is uniformly norm-to-norm continuous on bounded subsets of
E∗.

Theorem 2.2. Let E be a reflexive Banach space and 1 : E → R a continuous convex function which is strongly
coercive. Then the following assertions are equivalent:
(1) 1 is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
(2) 1∗ is Fréchet differentiable and ∇1∗ is uniformly norm-to-norm continuous on bounded subsets of E∗;
(3) dom 1∗ = E∗, 1∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let E be a Banach space and let 1 : E → R be a convex and Gâteaux differentiable function. Then the
Bregman distance [22] (see also [13, 19]) satisfies the three point identity that is

D1(x, z) = D1(x, y) + D1(y, z) + 〈x − y,∇1(y) − ∇1(z)〉, ∀x, y, z ∈ E. (2.1)

In particular, it can be easily seen that

D1(x, y) = −D1(y, x) + 〈y − x,∇1(y) − ∇1(x)〉, ∀x, y ∈ E. (2.2)

Indeed, by letting z = x in (2.1) and taking into account that D1(x, x) = 0, we get the desired result.
The following result has been proved in [16] (see also [34]).

Lemma 2.2. Let E be a Banach space and 1 : E → R a Gâteaux differentiable function which is uniformly
convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded sequences in E. Then the following assertions
are equivalent:
(1) limn→∞D1(xn, yn) = 0.
(2) limn→∞ ‖xn − yn‖ = 0.

The following result was first proved in [18] (see also [34]).

Lemma 2.3. Let E be a reflexive Banach space, 1 : E → R a strongly coercive Bregman function and V the
function defined by

V(x, x∗) = 1(x) − 〈x, x∗〉 + 1∗(x∗), x ∈ E, x∗ ∈ E∗.
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Then the following assertions hold:
(1) D1(x,∇1∗(x∗)) = V(x, x∗) for all x ∈ E and x∗ ∈ E∗.
(2) V(x, x∗) + 〈∇1∗(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

Corollary 2.1 ([66]). Let E be a Banach space, 1 : E → (−∞,∞] be a proper, lower semicontinuous and con-
vex function and p, q ∈ R, with 1 ≤ p ≤ 2 ≤ q and p−1 + q−1 = 1. Then the following statements are equivalent:
(1) There exists c1 > 0 such that 1 is ρ-convex with ρ(t) := c1

q tq for all t ≥ 0.

(2) There exists c2 > 0 such that for all (x, x∗), (y, y∗) ∈ G(∂1); ‖x∗ − y∗‖ ≥ 2c2
q ‖x − y‖q−1.

Lemma 2.4. Let E be a Banach space, s > 0 be a constant, ρs be the gauge of uniform convexity of 1 and
1 : E→ R be a convex function which is uniformly convex on bounded subsets of E. Then
(i) For any x, y ∈ Bs and α ∈ (0, 1)

1(αx + (1 − α)y) ≤ α1(x) + (1 − α)1(y) − α(1 − α)ρs(‖x − y‖).

(ii) For any x, y ∈ Bs

ρs(‖x − y‖) ≤ D1(x, y).

Here, Bs := {z ∈ E : ‖z‖ ≤ s}.

Proof. Let ρs be the gauge of uniform convexity of 1. In view of (1.10), we get (i). Let us prove (ii).
If x, y ∈ Bs and α ∈ (0, 1), then we obtain

1(αx + (1 − α)y) − 1(y)
α

≤ 1(x) − 1(y) − (1 − α)ρs(‖x − y‖).

Letting α→ 0 in the above inequality, we arrive at

〈x − y,∇1(y)〉 ≤ 1(x) − 1(y) − ρs(‖x − y‖).

This implies that
ρs(‖x − y‖) ≤ D1(x, y),

which completes the proof.

Lemma 2.5 [36]. Let {an}n∈N be a sequence of real numbers such that there exists a subsequence {ni}i∈N of {n}n∈N
such that ani < ani+1 for all i ∈N. Then there exists a subsequence {mk}k∈N ⊂N such that mk →∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j < a j+1}.

Lemma 2.6 [45, 65]. Let {sn}n∈N be a sequence of nonnegative real numbers satisfying the inequality:

sn+1 ≤ (1 − γn)sn + γnδn, ∀n ≥ 1,

where {γn}n∈N and {δn}n∈N satisfy the conditions:
(i) {γn}n∈N ⊂ [0, 1] and

∑
∞

n=1 γn = ∞, or equivalently, Π∞n=1(1 − γn) = 0;
(ii) lim supn→∞ δn ≤ 0, or
(ii)′

∑
∞

n=1 γnδn < ∞.
Then, limn→∞ sn = 0.
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3. Strong Convergence Theorems for Products of Resolvents

In this section, we propose a new Halpern-type iterative scheme for finding common zeros of finitely
many maximal monotone operators in a Banach space and prove the following strong convergence theorem.

Using ideas in [23], we can prove the following important result.

Theorem 3.1. Let E be a reflexive Banach space and 1 : E → R a strongly coercive Bregman function which
is bounded on bounded subsets, and uniformly convex and uniformly smooth on bounded subsets of E. Let
Ai : E → 2E∗ , i = 1, 2, ...,N, be N maximal monotone operators such that Z := ∩N

i=1A−1
i (0∗) , Ø. Let {αn}n∈N

and {βn}n∈N be two sequences in [0, 1] satisfying the following control conditions:
(a) limn→∞ αn = 0;
(b)

∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn}n∈N be a sequence generated by

u ∈ E, x1 ∈ E chosen arbitrarily,
yn = ∇1∗[βn∇1(xn) + (1 − βn)∇1(Res1rNAN

...Res1r1A1
(xn))],

xn+1 = ∇1∗[αn∇1(u) + (1 − αn)∇1(yn)] and n ∈N,
(3.1)

where ∇1 is the gradient of 1. If ri > 0, for each i = 1, 2, ...,N, then the sequence {xn}n∈N defined in (3.1) converges
strongly to proj1Zu as n→∞.

Proof. We divide the proof into several steps.
Let z = proj1Zu. We denote by Ti the resolvent Res1riAi

and by Si the composition Ti...T1 for any i = 1, 2, ...,N.
Therefore,

yn = ∇1∗[βn∇1(xn) + (1 − βn)∇1(TN...T1xn)] = ∇1∗[βn∇1(xn) + (1 − βn)∇1(SNxn)].

Step 1. We prove that {xn}n∈N, {yn}n∈N and {Sixn : n ∈N, i = 1, 2, ...,N} are bounded sequences in E.
We first show that {xn}n∈N is bounded. Let p ∈ Z be fixed. In view of Lemma 2.3 and (3.1), we have

D1(p, yn) = D1(p,∇1∗[(1 − βn)∇1(xn) + βn∇1(SNxn)])
= V(p, (1 − βn)∇1(xn) + βn∇1(SNxn))
≤ (1 − βn)V(p,∇1(xn)) + βnV(p,∇1(SNxn))
= (1 − βn)D1(p, xn) + βnD1(p,SNxn)
≤ (1 − βn)D1(p, xn) + βnD1(p, xn)
= D1(p, xn).

(3.2)

This implies that
D1(p, xn+1) = D1(p,∇1∗[αn∇1(u) + (1 − αn)∇1(yn)])

= V(p, αn∇1(u) + (1 − αn)∇1(yn))
≤ αnV(p,∇1(u)) + (1 − αn)V(p,∇1(yn))
= αnD1(p,u) + (1 − αn)D1(p, yn)
≤ αnD1(p,u) + (1 − αn)D1(p, yn)
≤ αnD1(p,u) + (1 − αn)D1(p, xn)
≤ max{D1(p,u),D1(p, xn)}.

(3.3)

By induction, we obtain
D1(p, xn+1) ≤ max{D1(p,u),D1(p, x1)} (3.4)

for all n ∈N. It follows from (3.4) that the sequence {D1(xn, x)}n∈N is bounded and hence there exists M1 > 0
such that

D1(xn, x) ≤M1, ∀n ∈N. (3.5)
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In view of Lemma 2.2 (3), we have that the sequence {xn}n∈N is bounded. Since {Si}
N
i=1 is a finite family of

Bregman relatively nonexpansive mappings from E into itself, we conclude that

D1(p,Sixn) ≤ D1(p, xn), ∀n ∈N and i = 1, 2, ...,N. (3.6)

This together with Definition 2.1 and the boundedness of {xn}n∈N implies that {Sixn : n ∈N, i = 1, 2, ...,N} is
bounded. The function 1 is bounded on bounded subsets of E and therefore∇1 is also bounded on bounded
subsets of E∗ (see, for example, [16](Proposition 1.1.11) for more details). This, together with Step 1, implies
that the sequences {∇1(xn)}n∈N, {∇1(yn)}n∈N and {∇1(Sixn) : n ∈ N, i = 1, 2, ...,N} are bounded in E∗. In
view of Theorem 2.2 (3), we obtain that dom 1∗ = E∗ and 1∗ is strongly coercive and uniformly convex on
bounded subsets of E. Let s1 = sup{‖∇1(xn)‖, ‖∇1(SNxn)‖ : n ∈N} and ρ∗s1

: E∗ → R be the gauge of uniform
convexity of the conjugate function 1∗.

Step 2. We prove that for any n ∈N

D1(z, yn) ≤ D1(z, xn) − βn(1 − βn)ρ∗s1
(‖∇1(xn) − ∇1(SNxn)‖). (3.7)

Let us show (3.7). For each n ∈N, in view of the definition of Bregman distance (see (1.5)), Lemma 2.4 and
(3.2), we obtain

D1(z, yn) = 1(z) − 1(yn) − 〈z − yn,∇1(yn)〉
= 1(z) + 1∗(∇1(yn)) − 〈yn,∇1(yn)〉 − 〈z,∇1(yn)〉 + 〈yn,∇1(yn)〉
= 1(z) + 1∗((1 − βn)∇1(xn) + βn∇1(SNxn))
− 〈z, (1 − βn)∇1(xn) + βn∇1(SNxn))〉
≤ (1 − βn)1(z) + βn1(z) + (1 − βn)1∗(∇1(xn)) + βn1

∗(∇1(SNxn))
− βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖)
− (1 − βn)〈z,∇1(xn)〉 − βn〈z,∇1(SNxn)〉

= (1 − βn)[1(z) + 1∗(∇1(xn)) − 〈z,∇1(xn)〉]
+ βn[1(z) + 1∗(∇1(SNxn)) − 〈z,∇1(SNxn)〉]
− βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖)
= (1 − βn)[1(z) − 1(xn) + 〈xn,∇1(xn)〉 − 〈z,∇1(xn)〉]

+ βn[1(z) − 1(SNxn) + 〈SNxn,∇1(SNxn)〉 − 〈z,∇1(SNxn)〉]
− βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖)
= (1 − βn)D1(z, xn) + βnD1(z,SNxn)
− βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖)
≤ (1 − βn)D1(z, xn) + βnD1(z, xn)
− βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖)
= D1(z, xn) − βn(1 − βn)ρ∗s1

(‖∇1(xn) − ∇1(SNxn)‖).

In view of Lemma 2.3 and (3.7), we obtain

D1(z, xn+1) = D1(z,∇1∗[αn∇1(z) + (1 − αn)∇1(yn)])
= D1(z,∇1∗[αn∇1(z) + (1 − αn)∇1(yn)])
= V(z, αn∇1(u) + (1 − αn)∇1(yn))
≤ αnV(z,∇1(u)) + (1 − αn)V(z,∇1(yn))
= αnD1(z,u) + (1 − αn)D1(z, yn)
≤ αnD1(z,u) + (1 − αn)D1(z, yn)
≤ αnD1(z,u)

+ (1 − αn)[D1(z, xn) − βn(1 − βn)ρ∗s1
(‖∇1(xn) − ∇1(SNxn)‖)].

(3.8)

Let M2 := sup{|D1(z,u) −D1(z, xn)| + βn(1 − βn)ρ∗s1
(‖∇1(xn) − ∇1(SNxn)‖) : n ∈N}. It follows from (3.8) that

βn(1 − βn)ρ∗s1
(‖∇1(xn) − ∇1(SNxn)‖) ≤ D1(z, xn) −D1(z, xn+1) + αnM2. (3.9)
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In view of Lemma 2.3 and (3.7) we obtain

D1(z, xn+1) = D1(z,∇1∗[αn∇1(u) + (1 − αn)∇1(yn)])
= V(z, αn∇1(u) + (1 − αn)∇1(yn))
≤ V(z, αn∇1(u) + (1 − αn)∇1(yn) − αn(∇1(u) − ∇1(z)))
− 〈∇1∗[αn∇1(u) + (1 − αn)∇1(yn)] − z,−αn(∇1(u) − ∇1(z))〉

= V(z, αn∇1(z) + (1 − αn)∇1(yn)) + αn〈xn+1 − z,∇1(u) − ∇1(z)〉
= D1(z,∇1∗[αn∇1(z) + (1 − αn)∇1(yn)])

+ αn〈xn+1 − z,∇1(u) − ∇1(z)〉
≤ αnD1(z, z) + (1 − αn)D1(z, yn) + αn〈xn+1 − z,∇1(u) − ∇1(z)〉
= (1 − αn)D1(z, xn) + αn〈xn+1 − z,∇1(u) − ∇1(z)〉.

(3.10)

The rest of the proof will be divided into two parts:
Case 1. If there exists n0 ∈ N such that {D1(z, xn)}∞n=n0

is nonincreasing, then {D1(z, xn)}n∈N is convergent.
Thus, we have D1(z, xn)−D1(z, xn+1)→ 0 as n→∞. This, together with condition (c) and (3.9), implies that

lim
n→∞

ρ∗s1
(‖∇1(xn) − ∇1(SNxn)‖) = 0.

Therefore, from the property of ρ∗s1
we deduce that

lim
n→∞
‖∇1(xn) − ∇1(SNxn)‖ = 0.

Since ∇1∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞
‖xn − SNxn‖ = 0. (3.11)

Since SN is a Bregman relatively nonexpansive mapping, there exists a subsequence {xni }i∈N of {xn}n∈N such
that xni ⇀ y ∈ F(SN) and

lim sup
n→∞

〈xn+1 − z,∇1(u) − ∇1(z)〉 = lim
i→∞
〈xni+1 − z,∇1(u) − ∇1(z)〉. (3.12)

This, together with (1.6), implies that

lim sup
n→∞

〈xn − z,∇1(u) − ∇1(z)〉 = 〈y − z,∇1(u) − ∇1(z)〉 ≤ 0. (3.13)

In view of Lemma 2.2 and (3.11) we obtain that

lim
n→∞

D1(SNxn, xn) = 0.

This implies that

D1(SNxn, yn) ≤ (1 − βn)D1(SNxn, xn) + βnD1(SNxn,SNxn) = (1 − βn)D1(SNxn, xn)→ 0 (3.14)

as n→∞. Also, we have

D1(yn, xn+1) ≤ αnD1(yn,u) + (1 − αn)D1(yn, yn) = αnD1(yn,u)→ 0 (3.15)

as n→∞. In view of Lemma 2.2 and (3.10), (3.14) and (3.15), we conclude that

lim
n→∞
‖yn − SNxn‖ = lim

n→∞
‖yn − xn+1‖ = 0 and lim

n→∞
‖xn+1 − xn‖ = lim

n→∞
‖yn − xn‖ = 0. (3.16)

This, together with Lemma 2.2. implies that

lim
n→∞

D1(yn, xn) = 0.
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For any w ∈ Z, it follows from the three point identity (see (2.2)) that

|D1(w, xn) −D1(w, yn)| = |D1(w,un) + D1(yn, xn)
+ 〈w − yn,∇1(yn) − ∇1(xn)〉 −D1(w, yn)|

= |D1(yn, xn) − 〈w − yn,∇1(yn) − ∇1(xn)〉|
≤ D1(yn, xn) + ‖w − yn‖‖∇1(yn) − ∇1(xn)‖
→ 0

as n→∞. On the other hand, we have from (3.2) that

D1(Si(xn),Si−1(xn)) = D1(Ti(Si−1(xn)),Si−1(xn))
≤ D1(w,Si−1(xn)) −D1(w,Si(xn))
≤ D1(w, xn) −D1(w, yn)
→ 0

as n→∞. This implies that
lim
n→∞

D1(Sixn, xn) = 0, i = 1, 2, ...,N.

It follows from Lemma 2.2 that
lim
n→∞
‖Sixn − xn‖ = 0, i = 1, 2, ...,N.

Hence y ∈ Z. From (3.13) and (3.16), we deduce that

lim sup
n→∞

〈xn − z,∇1(u) − ∇1(z)〉 = lim sup
n→∞

〈xn+1 − z,∇1(u) − ∇1(z)〉 ≤ 0.

Thus we have the desired result by Lemma 2.6.
Case 2. If there exists a subsequence {ni}i∈N of {n}n∈N such that

D1(z, xni ) < D1(z, xni+1)

for all i ∈N, then by Lemma 2.5, there exists a nondecreasing sequence {mk}k∈N ⊂N such that mk →∞,

D1(z, xmk ) < D1(z, xmk+1) and D1(z, xk) ≤ D1(z, xmk+1)

for all k ∈N. This, together with (3.9), implies that

βmk (1 − βmk )ρ
∗

s1
(‖∇1(xmk ) − ∇1(SNxmk )‖) ≤ D1(z, xmk ) −D1(z, xmk+1) + αmk M2 ≤ αmk M2

for all k ∈N. Then, by conditions (a) and (c), we get

lim
k→∞

ρ∗s1
(‖∇1(xmk ) − ∇1(SNxmk )‖) = 0.

By the same argument as Case 1, we arrive at

lim sup
k→∞

〈xmk+1 − z,∇1(u) − ∇1(z)〉 = lim sup
k→∞

〈xmk − z,∇1(u) − ∇1(z)〉 ≤ 0.

It follows from (3.10) that

D1(z, xmk+1) ≤ (1 − αmk )D1(z, xmk ) + αmk〈xmk+1 − z,∇1(u) − ∇1(z)〉. (3.17)

Since D1(z, xmk ) ≤ D1(z, xmk+1), we have that

αmk D1(z, xmk ) ≤ D1(z, xmk ) −D1(z, xmk+1) + αmk〈xmk+1 − z,∇1(u) − ∇1(z)〉
≤ αmk〈xmk+1 − z,∇1(u) − ∇1(z)〉. (3.18)
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In particular, since αmk > 0, we obtain

D1(z, xmk ) ≤ 〈xmk+1 − z,∇1(u) − ∇1(z)〉.

In view of (3.17), we deduce that
lim
k→∞

D1(z, xmk ) = 0.

This, together with (3.18), implies that
lim
k→∞

D1(z, xmk+1) = 0.

On the other hand, we have D1(z, xk) ≤ D1(z, xmk+1) for all k ∈Nwhich implies that xk → z as k→∞. Thus,
we have xn → z as n→∞.

Remark 3.1. We propose a new type of Halpern iterative scheme for finding common zeros of finitely
many maximal monotone operators in a reflexive Banach space E. This scheme has an advantage that we
do not use any projection which creates some difficulties in a practical calculation of the iterative sequence.

4. Equilibrium Problems and Inverse Strongly Monotone Mappings

Let C be a nonempty, closed and convex of a reflexive Banach space E. Let f : C×C→ R be a bifunction.
Consider the following equilibrium problem: Find p ∈ C such that

f (p, y) ≥ 0, ∀y ∈ C. (4.1)

For solving the equilibrium problem, let us assume that f : C × C→ R satisfies the following conditions:
(A1) f (x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, the function x 7−→ f (x, y) is upper semicontinuous;
(A4) for each x ∈ C, the function y 7−→ f (x, y) is convex and lower semicontinuous.
The set of solutions of problem (4.1) is denoted by EP( f ).

In this section, we propose Halpern-type iterative schemes for finding common solutions of an equilib-
rium problem and null spaces of a γ-inverse strongly monotone mapping in a 2-uniformly convex Banach
space and prove two strong convergence theorems.

Let 1 : E → R be a Legendre function. The resolvent of a bifunction f : C × C → R [58] is the operator
Res1f : E→ 2E∗ , defined by

Res1f (x) = {z ∈ C : f (z, y) + 〈y − z,∇1(z) − ∇1(x)〉 ≥ 0 f or all y ∈ C} (4.2)

for all x ∈ E. We also define the mapping A f : E→ 2E∗ in the following way:

A1(x) =

{
{ξ ∈ E∗ : f (x, y) ≥ 〈ξ, y − x〉 ∀y ∈ C}, x ∈ C,
Ø, x < C. (4.3)

Lemma 4.1 [33, 39, 58]. Let E be a reflexive Banach space and 1 : E → R a convex, continuous and strongly
coercive function which is bounded on bounded subsets and uniformly convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of E and f : C × C → R a bifunction satisfying (A1)-(A4) and EP( f ) , Ø.
Then, the following statements hold:
(1) dom (Res1f ) = E;

(2) Res1f is single-valued;

(3) Res1f is a Bregman firmly nonexpansive mapping [52], i.e., for all x, y ∈ E,

〈Res1f (x) − Res1f (y),∇1(Res1f (x)) − ∇1(Res1f (y))〉 ≤ 〈Res1f (x) − Res1f (y),∇1(x) − ∇1(y)〉;



S. Timnak et al. / Filomat 31:15 (2017), 4673–4693 4686

(4) the set of fixed points of Res1f is the solution of the corresponding equilibrium problem, i.e., F(Res1f ) = EP( f );
(5) EP( f ) is a closed and convex subset of C;
(6) D1(q,Res1f x) + D1(Res1f x, x) ≤ D1(q, x), ∀q ∈ F(Res1f ).

Lemma 4.2 [33, 58]. Let E be a reflexive Banach space and 1 : E → R a convex, continuous and strongly co-
ercive function which is bounded on bounded subsets and uniformly convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of E and f : C × C → R a bifunction satisfying (A1)-(A4) and EP( f ) , Ø.
Then, the following statements hold:
(1) EP( f ) = A−1

1 (0∗);
(2) A1 is a maximal monotone operator;
(3) Res1f = Res1A1 .

Theorem 4.1. Let E be a 2-uniformly convex Banach space and 1 : E → R a strongly coercive Bregman func-
tion which is bounded on bounded subsets, and uniformly convex and uniformly smooth on bounded subsets of E.
Assume that there exists c1 > 0 such that 1 is ρ-convex with ρ(t) := c1

2 t2 for all t ≥ 0. Let Ci, i = 1, 2, ...,N be N
nonempty, closed and convex subsets of E. Let fi : Ci × Ci → R, i = 1, 2, ...,N be bifunctions that satisfy conditions
(A1)-(A4) such that ∩N

i=1EP( fi) , Ø. Let Ai : E → 2E∗ , i = 1, 2, ...,N, be N maximal monotone operators such that
∩

N
i=1A−1

i (0∗) , Ø. Assume that A : C→ E∗ is a γ-inverse strongly monotone mapping for some γ > 0. Suppose that
Z := ∩N

i=1(A−1
i (0∗)∩A−1(0)∩EP( fi)) is a nonempty subset of C, where EP( fi) is the set of solutions to the equilibrium

problem (4.1). Let {αn}n∈N and {βn}n∈N be two sequences in [0, 1] satisfying the following control conditions:
(a) limn→∞ αn = 0;
(b)

∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn}n∈N be a sequence generated by

u ∈ E, x1 ∈ E chosen arbitrarily,
wn = ∇1∗[∇1(xn) − λAxn],
yn = ∇1∗[βn∇1(wn) + (1 − βn)∇1(Res1rN fN

...Res1r1 f1
(wn))],

xn+1 = ∇1∗[αn∇1(u) + (1 − αn)∇1(yn)] and n ∈N,

(4.4)

where ∇1 is the gradient of 1. Let λ be a constant such that 0 < λ <
c2

2γ

2 , where c2 is the 2-uniformly convex constant
of E satisfying Corollary 2.1 (2). If ri > 0, for each i = 1, 2, ...,N, then the sequence {xn}n∈N defined in (4.4) converges
strongly to proj1Zu as n→∞.

Proof. We divide the proof into several steps.
Set

z = proj1Zu.
Step 1. We prove that {xn}n∈N, {yn}n∈N, {wn}n∈N and {un}n∈N are bounded sequences in C. We first show that
{xn}n∈N is bounded. Let p ∈ F be fixed. In view of (1.9), Lemma 2.3, Lemma 4.2 and (4.1), we obtain

D1(p,wn) = D1(p,∇1∗[∇1(xn) − βAxn])
= V(p,∇1(xn) − λAxn)
≤ V(p,∇1(xn) − λAxn + λAxn) − 〈∇1∗(∇1(xn) − λAxn) − p, λAxn〉

= V(p,∇1(xn)) − λ〈∇1∗(∇1(xn) − λAxn) − p,Axn〉

= D1(p, xn) − λ〈xn − p,Axn〉 − λ〈∇1∗(∇1(xn) − λAxn) − xn,Axn〉

≤ D1(p, xn) − λγ‖Axn‖
2 + λ‖∇1∗(∇1(xn) − λAxn) − ∇1∗∇1(xn)‖‖Axn‖

≤ D1(p, xn) − λγ‖Axn‖
2 + 4λ2

c2
2
‖Axn‖

2

≤ D1(p, xn) + λ
(

4λ
c2

2
− γ

)
‖Axn‖

2.

(4.5)

This, together with 4λ
c2

2
− γ < 0, implies that

D1(p,wn) ≤ D1(p, xn).
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Since SN is Bregman relatively nonexpansive, for each n ∈N, we obtain

D1(p, yn) = D1(p,∇1∗[βn∇1(wn) + (1 − βn)∇1(SNwn)])
= V(p, βn∇1(wn) + (1 − βn)∇1(SNwn))
= 1(p) − 〈p, βn∇1(wn) + (1 − βn)∇1(SNwn)〉

+ 1∗(βn∇1(wn) + (1 − αn)∇1(SNwn))
≤ αn1(p) + (1 − αn)1(p)

+ βn1
∗(∇1(wn)) + (1 − αn)1∗(∇1(SNwn))

= αnV(p,∇1(xn)) + (1 − βn)V(p,∇1(SNwn))
= βnD1(p, xn) + (1 − βn)D1(p,SNwn)
≤ βnD1(p, xn) + (1 − βn)D1(p,wn)
≤ βnD1(p, xn) + (1 − βn)D1(p, xn)
= D1(p, xn).

This implies that

D1(p, xn+1) = D1(p,∇1∗[αn∇1(u) + (1 − αn)∇1(yn)])
= V(p, αn∇1(u) + (1 − αn)∇1(yn))
≤ αnV(p,∇1(u)) + (1 − αn)V(p,∇1(yn))
= αnD1(p,u) + (1 − αn)D1(p, yn)
≤ αnD1(p,u) + (1 − αn)D1(p, yn)
≤ αnD1(p,u) + (1 − αn)D1(p, xn)
≤ max{D1(p,u),D1(p, xn)}.

(4.6)

By induction, we obtain

D1(p, xn+1) ≤ max{D1(p,u),D1(p, x1)} (4.7)

for all n ∈N. It follows from (4.7) that the sequence {D1(p, xn)}n∈N is bounded and hence there exists M3 > 0
such that

D1(p, xn) ≤M3, ∀n ∈N. (4.8)

In view of Definition 2.1, we deduce that the sequence {xn}n∈N is bounded. Since {Trn }n∈N is an infinite
family of Bregman relatively nonexpansive mappings from E into C, we conclude that

D1(p,Siwm) ≤ D1(p,wn) ≤ D1(p, xn), ∀n ∈N and i = 1, 2, ...,N. (4.9)

This, together with Definition 2.2 and the boundedness of {xn}n∈N, implies that {Siwn}n∈N is bounded for
each i = 1, 2, ...,N. The function 1 is bounded on bounded subsets of E and therefore ∇1 is also bounded
on bounded subsets of E∗ (see, for example, [16](Proposition 1.1.11) for more details). This, together with
Step 1, implies that the sequences {∇1(xn)}n∈N, {∇1(yn)}n∈N and {∇1(Siwn)}n∈N are bounded in E∗. In view of
Theorem 2.2 (3), we obtain that dom 1∗ = E∗ and 1∗ is strongly coercive and uniformly convex on bounded
subsets of E. Let s2 = sup{‖∇1(xn)‖, ‖∇1(Siwn)‖ : n ∈ N, i = 1, 2, ...,N} and ρ∗s2

: E∗ → R be the gauge of
uniform convexity of the conjugate function 1∗.

Step 2. We prove that for any n ∈N

D1(z, yn) ≤ D1(z, xn) − βn(1 − βn)ρ∗s2
(‖∇1(wn) − ∇1(SNwn)‖). (4.10)

Let us show (4.10). For each n ∈ N, in view of the definition of Bregman distance (see (1.5)), Lemma 2.5
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and (4.10), we obtain

D1(z, yn) = 1(z) − 1(yn) − 〈z − yn,∇1(yn)〉
= 1(z) + 1∗(∇1(yn)) − 〈yn,∇1(yn)〉 − 〈z,∇1(yn)〉 + 〈yn,∇1(yn)〉
= 1(z) + 1∗((1 − βn)∇1(wn) + βn∇1(SNwn))
− 〈z, (1 − βn)∇1(wn) + βn∇1(SNwn))〉
≤ (1 − βn)1(z) + βn1(z) + (1 − βn)1∗(∇1(wn)) + βn1

∗(∇1(SNwn))
− βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖)
− (1 − βn)〈z,∇1(wn)〉 − βn〈z,∇1(SNwn)〉

= (1 − βn)[1(z) + 1∗(∇1(wn)) − 〈z,∇1(wn)〉]
+ βn[1(z) + 1∗(∇1(SNwn)) − 〈z,∇1(SNwn)〉]
− βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖)
= (1 − βn)[1(z) − 1(xn) + 〈wn,∇1(wn)〉 − 〈z,∇1(xn)〉]

+ βn[1(z) − 1(SNwn) + 〈SNwn,∇1(SNwn)〉 − 〈z,∇1(SNwn)〉]
− βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖)
= (1 − βn)D1(z,wn) + βnD1(z,SNwn)
− βn(1 − βn)ρ∗s3

(‖∇1(wn) − ∇1(SNwn)‖)
≤ (1 − βn)D1(z,wn) + βnD1(z,wn)
− βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖)
= D1(z,wn) − βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖)
≤ D1(z, xn) − βn(1 − βn)ρ∗s2

(‖∇1(wn) − ∇1(SNwn)‖).

In view of Lemma 2.3 and (4.10), we obtain

D1(z, xn+1) = D1(z, αn∇1(z) + (1 − αn)∇1(yn))
= D1(z,∇1∗[αn∇1(z) + (1 − αn)∇1(yn)])
= V(z, αn∇1(u) + (1 − αn)∇1(yn))
≤ αnV(z,∇1(u)) + (1 − αn)V(z,∇1(yn))
= αnD1(z,u) + (1 − αn)D1(z, yn)
≤ αnD1(z,u) + (1 − αn)D1(z, yn)
≤ αnD1(z,u)

+ (1 − αn)[D1(z, xn) − βn(1 − βn)ρ∗s2
(‖∇1(wn) − ∇1(SNwn)‖)].

(4.11)

Let M4 := sup{|D1(z,u) −D1(z, xn)| + βn(1 − βn)ρ∗s2
(‖∇1(wn) − ∇1(SNwn)‖) : n ∈N}. It follows from (4.11) that

βn(1 − βn)ρ∗s2
(‖∇1(wn) − ∇1(SNwn)‖) ≤ D1(z, xn) −D1(z, xn+1) + αnM4. (4.12)

In view of Lemma 2.3 and (4.10) we obtain

D1(z, xn+1) = D1(z,∇1∗[αn∇1(u) + (1 − αn)∇1(yn)])
= V(z, αn∇1(u) + (1 − αn)∇1(yn))
≤ V(z, αn∇1(u) + (1 − αn)∇1(yn) − αn(∇1(u) − ∇1(z)))
− 〈1∗[αn∇1(u) + (1 − αn)∇1(yn)] − z,−αn(∇1(u) − ∇1(z))〉

= V(z, αn∇1(z) + (1 − αn)∇1(yn)) + αn〈zn − z,∇1(u) − ∇1(z)〉
= D1(z,∇1∗[αn∇1(z) + (1 − αn)∇1(yn)])

+ αn〈zn − z,∇1(u) − ∇1(z)〉
≤ αnD1(z, z) + (1 − αn)D1(z, yn) + αn〈zn − z,∇1(u) − ∇1(z)〉
= (1 − αn)D1(z, xn) + αn〈zn − z,∇1(u) − ∇1(z)〉.

(4.13)

Step 3. By the same argument as in the proof of Theorem 3.1 and using (4.12)-(4.13), we conclude that

lim
n→∞
‖wn − z‖ = 0 and lim

n→∞
‖wn − SNwn‖ = 0.

Also, the following is obvious:

lim
n→∞
‖xn − z‖ = 0, and lim

n→∞
‖un − xn‖ = 0. (4.14)
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In view of Lemma 2.2 and (4.14) we obtain that

lim
n→∞

D1(SNwn,wn) = 0.

This implies that

D1(SNwn, yn) ≤ (1 − βn)D1(SNwn,wn) + βnD1(SNwn,SNwn) = (1 − βn)D1(SNwn,wn)→ 0 (4.15)

as n→∞. Also, we have

D1(yn, zn) ≤ αnD1(yn,u) + (1 − αn)D1(yn, yn) = αnD1(yn,u)→ 0 (4.16)

as n→∞ and hence
D1(yn, xn+1) ≤ D1(yn, zn)→ 0 (4.17)

as n→∞. In view of Lemma 2.2 and (4.15)-(4.17), we conclude that

lim
n→∞
‖yn − wn‖ = lim

n→∞
‖yn − SNwn‖ = 0 and lim

n→∞
‖xn+1 − yn‖ = lim

n→∞
‖yn − xn+1‖ = 0. (4.18)

From (4.15)-(4.18), we deduce that

lim
n→∞
‖xn − z‖ = lim

n→∞
‖yn − z‖ = 0. (4.19)

This, together with Lemma 2.2. implies that

lim
n→∞

D1(yn, xn) = 0. (4.20)

A similar argument, as in the proof of Theorem 3.1, we get the desired conclusion.
Let Ci, i = 1, 2, ...,N be N nonempty, closed and convex subsets of a Banach space E. The convex feasi-

bility problem is to find an element in the assumed nonempty intersection ∩N
i=1Ci (see [3]). In the following,

we prove a strong convergence theorem concerning convex feasibility problems in a reflexive Banach space.

Theorem 4.2. Let E be a 2-uniformly convex Banach space and 1 : E → R a strongly coercive Bregman func-
tion which is bounded on bounded subsets, and uniformly convex and uniformly smooth on bounded subsets of E.
Assume that there exists c1 > 0 such that 1 is ρ-convex with ρ(t) := c1

2 t2 for all t ≥ 0. Let Ci, i = 1, 2, ...,N be N
nonempty, closed and convex subsets of E. Let fi : Ci × Ci → R, i = 1, 2, ...,N be bifunctions that satisfy conditions
(A1)-(A4) such that ∩N

i=1EP( fi) , Ø. Let Ai : E → 2E∗ , i = 1, 2, ...,N, be N maximal monotone operators such that
∩

N
i=1A−1

i (0∗) , Ø. Assume that A : C → E∗ is a γ-inverse strongly monotone mapping for some γ > 0. Suppose
that Z := ∩N

i=1[A−1
i (0∗) ∩ EP( fi)] ∩ A−1(0) , Ø is a nonempty subset of C, where EP( f ) is the set of solutions to

the equilibrium problem (1.2). Let {αn}n∈N and {βn}n∈N be two sequences in [0, 1] satisfying the following control
conditions:
(a) limn→∞ αn = 0;
(b)

∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn}n∈N be a sequence generated by

u ∈ E, x1 ∈ E chosen arbitrarily,
wn = ∇1∗[∇1(xn) − λAxn],
yn = ∇1∗[βn∇1(wn) + (1 − βn)∇1(proj1rN ,CN

...proj1r1,C1
(wn)],

xn+1 = ∇1∗[αn∇1(u) + (1 − αn)∇1(yn)] and n ∈N,

(4.21)

where ∇1 is the gradient of 1. Let λ be a constant such that 0 < λ <
c2

2γ

2 , where c2 is the 2-uniformly convex constant
of E satisfying Corollary 2.1 (2). If ri > 0, for each i = 1, 2, ...,N, then the sequence {xn}n∈N defined in (4.21) converges
strongly to proj1Zu as n→∞.
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Remark 4.1. Theorem 3.1 improves Theorems 1.1 and 1.2 in the following aspects.
(1) In Theorem 3.1, we present a strong convergence theorem for products of resolvents of finitely many
maximal monotone operators with a new algorithm and new control conditions. This is complementary to
Theorem 1.1.
(2) For the algorithm, we remove the sets Cn and Qn in Theorems 1.1 and 1.2.

5. Applications (Hammerstein-type Equations)

Let E be a real Banach space with the dual space E∗. The generalized formulation of many boundary
value problems for ordinary and partial differential equations leads to operator equations of the type

〈z,Ax〉 = 〈z, b〉 ∀z ∈ E,

which is equivalent to equality of functionals on E. That is, the equality of the form:

Ax = b, (5.1)

where A is a monotone-type operator acting from a Banach space E into E∗. Without loss of generality we
may assume b = 0. It is well known that a solution of the equation Ax = 0 (i.e., 〈z,Ax〉 = 0 ∀z ∈ E) is a
solution of the variational inequality 〈z − x,Ax〉 ≥ 0 ∀z ∈ E. Therefore, the theory of monotone operators
and its applications to nonlinear partial differential equations and variational inequalities are related and
have been involved in a substantial topic in nonlinear functional analysis. One important application of
solving (5.1) is finding the zeros of the so-called equation of Hammerstein-type (see e.g., [29]), where a
nonlinear integral equation of Hammerstein type is one of the form:

u(x) +

∫
Ω

k(x, y) f (y,u(y))dy = h(x), (5.2)

where dy is a σ-finite measure on the measure space Ω; the real kernel k is defined on Ω×Ω, f is a real-valued
function defined on Ω × R and is, in general, nonlinear and h is a given function on Ω. If we now define
an operator K by Kv(x) =

∫
Ω

k(x, y)v(y)dy; x ∈ Ω, and the so-called superposition or Nemytskii operator by
Qu(y) := f (y,u(y)), then the integral Eq. (5.2) can be put in operator theoretic form as follows:

u + KQu = 0, (5.3)

where, without loss of generality, we have taken h = 0.
Interest in Eq. (5.2) stems mainly from the fact that several problems that arise in differential equations,

for instance, elliptic boundary value problems whose linear parts posses Green’s functions can, as a rule, be
transformed into equations of the form (5.2) (see e.g., [42], chapter IV). Equations of the Hammerstein type
play a crucial role in the theory of optimal control systems (see e.g., [25]). Several existence and uniqueness
theorems have been proved for equations of the Hammerstein type (see e.g., [24, 26]). Very recently, Ofoedu
and Malonza in [41] proposed an iterative solution of the operator Hammerstein Eq. (5.1) in a 2-uniformly
convex and uniformly smooth Banach space.

Now, we give an application of Theorem 4.1 to an iterative solution of the operator Hammerstein Eq.
(5.1).

Theorem 5.1. Let E be a real Banach space with dual space E∗ such that X = E × E∗ (with norm ‖z‖2X =

‖u‖2E + ‖v‖2E∗ , z = (u, v) ∈ X) is a 2-uniformly convex and uniformly smooth real Banach space. Let 1 : X → R be
a strongly coercive Bregman function which is bounded on bounded subsets, and uniformly convex and uniformly
smooth on bounded subsets of X. Assume that there exists c1 > 0 such that 1 is ρ-convex with ρ(t) := c1

2 t2 for all t ≥ 0.
Let Q : E→ E∗ and K : E∗ → E with dom K = Q(E) = E∗ be continuous monotone type operators such that Eq. (5.3)
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has a solution in E, and such that the map A : X→ X∗ defined by Az := A(u, v) = (Qu−v,u+Kv) isγ-inverse strongly
monotone. Let Ci, i = 1, 2, ...,N be N nonempty, closed and convex subsets of X and fi : Ci × Ci → R, i = 1, 2, ...,N
be bifunctions that satisfy conditions (A1)-(A4) such that ∩N

i=1EP( fi) , Ø. Let Ai : E → 2E∗ , i = 1, 2, ...,N, be
N maximal monotone operators such that ∩N

i=1A−1
i (0∗) , Ø. Let {αn}n∈N and {βn}n∈N be two sequences in [0, 1]

satisfying the following control conditions:
(a) limn→∞ αn = 0;
(b)

∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn}n∈N be a sequence generated by

u ∈ E, x1 ∈ C chosen arbitrarily,
wn = ∇1∗[∇1(xn) − βAxn],
yn = ∇1∗[βn∇1(wn) + (1 − βn)∇1(Res1rN fN

...Res1r1 f1
wn)],

xn+1 = ∇1∗[αn∇1(u) + (1 − αn)∇1(yn)] and n ∈N,

(5.4)

where ∇1 is the gradient of 1. Let β be a constant such that 0 < β <
c2

2γ

2 , where c2 is the 2-uniformly convex constant
of E satisfying Corollary 2.1 (2). If Z := ∩N

i=1[A−1
i (0∗) ∩ EP( fi)] ∩ A−1(0) , Ø, then the sequence {xn}n∈N defined by

(5.4) converges strongly to proj1Zu as n→∞.

Remark 5.1. Observe that z0 ∈ Z implies, in particular, that z0 ∈ A−1(0) ⇐⇒ Az0 = 0. But z0 = (u0, v0)
for some u0 ∈ E and v0 ∈ E∗; moreover, Az0 = A(u0, v0) = (Qu0 − v0,u0 + Kv0). So, Az0 = 0 implies that
(Qu0 − v0,u0 + Kv0) = (0, 0). This is equivalent to Qu0 − v0 = 0 and u0 + Kv0 = 0. Thus we have v0 = Qu0
which in turn implies that u0 + Kv0 = 0. Therefore, u0 ∈ E solves the Hammerstein-type Eq. (5.3).
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