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Abstract. The distinguishing number (index) D(G) (D′(G)) of a graph G is the least integer d such that G
has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. In
this paper we compute these two parameters for some specific graphs. Also we study the distinguishing
number and the distinguishing index of corona product of two graphs.

1. Introduction

Let G = (V,E) be a simple graph. We use the standard graph notation ([5]). In particular, Aut(G) denotes
the automorphism group of G. A labeling of G, φ : V → {1, 2, . . . , r}, is said to be r-distinguishing, if no
non-trivial automorphism of G preserves all of the vertex labels. The point of the labels on the vertices
is to destroy the symmetries of the graph, that is, to make the automorphism group of the labeled graph
trivial. Formally, φ is r-distinguishing if for every non-trivial σ ∈ Aut(G), there exists x in V = V(G) such
that φ(x) , φ(xσ). We will often refer to a labeling as a coloring, but there is no assumption that adjacent
vertices get different colors. Of course the goal is to minimize the number of colors used. Consequently the
distinguishing number of a graph G is defined by

D(G) = min{r| G has a labeling that is r-distinguishing}.

This number has defined by Albertson and Collins [2]. Similar to this definition, Kalinowski and Pilśniak
[6] have defined the distinguishing index D′(G) of G which is the least integer d such that G has an edge
colouring with d colours that is preserved only by a trivial automorphism. If a graph has no nontrivial
automorphisms, its distinguishing number is 1. In other words, D(G) = 1 for the asymmetric graphs. The
other extreme, D(G) = |V(G)|, occurs if and only if G = Kn. The distinguishing index of some examples
of graphs was exhibited in [6]. For instance, D(Pn) = D′(Pn) = 2 for every n > 3, and D(Cn) = D′(Cn) = 3
for n = 3, 4, 5, D(Cn) = D′(Cn) = 2 for n > 6. It is easy to see that the value |D(G) − D′(G)| can be large.
For example D′(Kp,p) = 2 and D(Kp,p) = p + 1, for p ≥ 4. The Cartesian product of graphs G and H is a
graph denoted G�H whose vertex set is V(G) × V(H). Two vertices (1, h) and (1′, h′) are adjacent if either
1 = 1′ and hh′ ∈ E(H), or 11′ ∈ E(G) and h = h′. We denote G�G by G2, and we recursively define the k-th
Cartesian power of G as Gk = G�Gk−1 [4]. A graph G is called prime if G = G1�G2 implies that either G1
or G2 is K1. The distinguishing number and index of the Cartesian powers of graphs has been thoroughly

2010 Mathematics Subject Classification. Primary 05C15; Secondary 05E18
Keywords. Edge colouring; distinguishing index; friendship graph; corona.
Received: 03 March 2016; Accepted: 26 July 2016
Communicated by Francesco Belardo
Email addresses: alikhani@yazd.ac.ir (Saeid Alikhani), s.soltani1979@gmail.com (Samaneh Soltani)



S. Alikhani, S. Soltani / Filomat 31:14 (2017), 4393–4404 4394

investigated. It was first proved by Albertson [1] that if G is a connected prime graph, then D(Gk) = 2
whenever k ≥ 4, and if |V(G)| ≥ 5, then also D(G3) = 2. Next, Klav̌zar and Zhu [8] showed that for any
connected graph G with a prime factor of order at least 3, D(Gk) = 2 for k ≥ 3. Michael and Garth in [9]
have determined the distinguishing number of the Cartesian product of complete graphs. Pilśniak studied
the Nordhaus-Gaddum bounds for the distinguishing index in [10]. Also the distinguishing number of the
hypercube has been investigated in [3]. Similar to definition of D(G) and D′(G), authors in [7] introduced
the total distinguishing number of a graph G, D′′(G) as the least number d such that G has a total colouring
(not necessarily proper) with d colours that is only preserved by the trivial automorphism. They proved
that D′′(G) ≤ d

√
∆(G)e.

In this paper, we continue the study of two parameters D(G),D′(G) and proceed as follows.

In the next section, we consider two specific graphs, friendship graphs and book graphs and compute
their distinguishing number and index. Also we study the distinguishing number and the distinguishing
index of corona product of two graphs in Section 3.

2. The Distinguishing Number and Index of some Graphs

In this section, we consider friendship graphs and book graphs and compute their distinguishing
number and their distinguishing index. We begin with friendship graph. The friendship graph Fn (n > 2)
can be constructed by joining n copies of the cycle graph C3 with a common vertex. First we state the
following lemma:

Figure 1: Friendship graph Fn and the vertex labeling of F15, respectively.

Lemma 2.1. The order of automorphism group of Fn (n > 2) is |Aut(Fn)| = n!2n.

Proof. Since w is the only vertex of Fn which is not of degree 2 (Figure 1), so w is fixed by all elements of
the automorphism group. We can get the automorphism group of Fn by interchanging the base of triangles
together and rotating about the center w. Therefore |Aut(Fn)| = n!2n.

Theorem 2.2. The distinguishing number of the friendship graph Fn (n ≥ 2) is

D(Fn) = d
1 +
√

8n + 1
2

e.
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Proof. First we shall find a lower bound for D(Fn) and then we present a distinguishing vertex labeling with
this number of labels. Let {xi, yi}, 1 6 i 6 n be the set of two labels that has been assigned to the two vertices
of the base of i-th triangle, and L =

{
1, {xi, yi} | 1 6 i 6 n, xi, yi ∈ N

}
is the labeling of Fn such that the label

of the central vertex w is 1 and the label of the two vertices on the base of i-th triangle is {xi, yi}. If L is a
distinguishing labeling for Fn, then it satisfies the following properties:

(i) For every i ∈ {1, . . .n}, xi , yi. Because for every 1 ≤ i ≤ n, the map fi : V(Fn) → V(Fn) which maps
v2i−1 and v2i to each other and fixes the rest of vertices of Fn, is an automorphism of Fn.

(ii) For every i, j ∈ {1, . . .n} where i , j, {xi, yi} , {x j, y j}. Because for every i, j ∈ {1, . . .n} where i , j, the
map fi, j : V(Fn) → V(Fn) which maps v2i−1 and v2 j to each other and v2i and v2 j−1 to each other and
fixes the rest of vertices of Fn, is an automorphism of Fn. Also the map 1i, j : V(Fn) → V(Fn) which
maps v2i−1 and v2 j−1 to each other and v2i and v2 j to each other and fixes the rest of vertices of Fn, is an
automorphism of Fn.

So it can be obtained that with labels {1, . . . , s} we can make at most
(s

2
)

numbers of the pairs (x, y)
such that they satisfy (i) and (ii). Hence D(Fn) > min{s :

(s
2
)
> n}. By a simple computation we get

D(Fn) > d
1 +
√

8n + 1
2

e. Now we define a distinguishing vertex labeling on Fn with d
1 +
√

8n + 1
2

e labels.
Consider the friendship graph in Figure 1. The function that maps v1 to v2 and v2 to v1 and fixes the rest of
vertices, is a non-trivial automorphism. Thus the labels v1 and v2 should be different. We assign the vertex
v1 the label 1 and the vertex v2 the label 2. Similarly, the function that maps v3 to v4 and v4 to v3 and fixes
the rest, is a non-trivial automorphism. Thus the labels v3, v4 should be distinct. Let assign the vertex v3 the
label 2 and the vertex v4 the label 3. We continue this method to label all vertices of friendship graph (see
the label of F15 in Figure 1). Note that the label of vertex w is 1. Hence this method gives a distinguishing
vertex labeling with the minimum number of labels. By the above process, observe that the distinguishing
number of Fn, D(Fn), is the n-th term of the sequence {D(Fi)}which defines as follows:

{D(Fi)}i>1 = {−, 3, 3, 4, 4, 4, 5, . . . , 5︸  ︷︷  ︸
4−times

, 6, . . . , 6︸  ︷︷  ︸
5−times

, 7, . . . , 7︸  ︷︷  ︸
6−times

, . . . , m, . . . ,m︸   ︷︷   ︸
(m−1)−times

, . . .}.

In fact,

D(Fn) = min{k :
k∑

i=2

(i − 1) > n}.

By an easy computation, we see that

min{k :
k∑

i=2

(i − 1) > n} = d
1 +
√

8n + 1
2

e.

Therefore we have the result.
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Figure 2: The edge labeling of F11.

Now we shall compute the distinguishing index of the friendship graph, i.e., D′(Fn).

Theorem 2.3. Let an = 1 + 27n + 3
√

81n2 + 6n. For every n ≥ 2,

D′(Fn) = d
1
3

(an)
1
3 +

1

3(an)
1
3

+
1
3
e.

Proof. First we show that D′(Fn) > min{k : k3
− k2

≥ 2n} and next we present a distinguishing edge labeling
such that it obtains this bound.

Let {xi, yi, zi}, 1 6 i 6 n be the label of three sides of a triangle in the friendship graph such that zi is the
label which it is assigned to the base and xi, yi are the labels of two sides, and let L′ =

{
(xi, yi, zi) | 1 6 i 6

n, xi, yi ∈ N
}

be the labeling of Fn. If L′ is a distinguishing labeling for Fn, then it satisfies the following
properties:

(i) For all j = 1, . . . ,n, (x j, y j, z j) , (y j, x j, z j). Because for every i ∈ {1, . . .n}, the map fi : V(Fn) → V(Fn)
which maps v2i−1 and v2i to each other and fixes the rest of the vertices of Fn, is an automorphism of
Fn.

(ii) For every j , i, (xi, yi, zi) , (x j, y j, z j) and (yi, xi, zi) , (x j, y j, z j). Because for every i, j ∈ {1, . . .n} where
i , j, the map fi, j : V(Fn) → V(Fn) which maps v2i−1 and v2 j to each other and v2i and v2 j−1 to each
other and fixes the rest of vertices of Fn, is an automorphism of Fn. Also the map 1i, j : V(Fn)→ V(Fn)
such that it maps v2i−1 and v2 j−1 to each other and v2i and v2 j to each other and fixes the rest of vertices
of Fn, is an automorphism of Fn.

So it can be obtained that with labels {1, . . . , s} we can make at most
(s

2
)
s numbers of the 3-ary’s (x, y, z)

such that they satisfy (i) and (ii) (there are
(s

2
)

choices for xi and yi and s choices for zi). Hence D′(Fn) >
min{s :

(s
2
)
s ≥ n} and it can be calculated that D′(Fn) > d 1

3 (an)
1
3 + 1

3(an)
1
3

+ 1
3 e.

Now we define a distinguishing edge labeling on Fn with min{k : k3
− k2

≥ 2n} labels. Similar to the
vertex labeling of Fn, in the edge labeling of Fn, the labels of two sides of every triangle should be distinct,
otherwise, we have a non-trivial automorphism, which preserves the labeling. We assign the first triangle,
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the 3-ary (1, 2, 1) and the second the 3-ary (1, 2, 2). Now we assign the third triangle, the 3-ary (1, 3, 1) and
the forth triangle the 3-ary (2, 3, 1). Continuing this method we can obtain a distinguishing labeling for the
graph (see the Figure 2 for the labeling of F11). It is easy to see that the distinguishing index of Fn, D′(Fn), is
the n-th term of the sequence {D′(Fi)}which defines as follows:

{D′(Fi)}i>1 = {−, 2, 3, . . . , 3︸  ︷︷  ︸
7−times

, 4, . . . , 4︸  ︷︷  ︸
15−times

, 5, . . . , 5︸  ︷︷  ︸
26−times

, 6, . . . , 6︸  ︷︷  ︸
40−times

, . . . , m, . . . ,m︸   ︷︷   ︸
2(m−1)+3(m−1

2 )−times

, . . .}.

In fact,

D′(Fn) = min{k :
k∑

i=2

(
2(i − 1) + 3

(
i − 1

2

))
> n}.

By an easy computation, we see that

min{k :
k∑

i=2

(
2(i − 1) + 3

(
i − 1

2

))
> n} = min{k : k3

− k2
≥ 2n} =

d
1
3

(1 + 27n + 3
√

81n2 + 6n)1/3 +
1

3(1 + 27n + 3
√

81n2 + 6n)1/3
+

1
3
e.

So, our method for edge labeling of Fn which as shown in Figure 2 lead to use the minimum number of
labels. Therefore we have the result.

The n-book graph (n > 2) (Figure 3) is defined as the Cartesian product K1,n�P2. We call every C4 in the
book graph Bn, a page of Bn. All pages in Bn have a common side v1v2. If we change the labels of vertices
of parallel side of v1v2 (for example the labels of v3 and v4 in Figure 3), then we call this new page as the
inverse of the first page. We shall compute the distinguishing number and index of Bn. The following result
gives the order of automorphism group Bn.

Figure 3: Book graph Bn.

Theorem 2.4. For every n ≥ 2, |Aut(Bn)| = 2n!.

Proof. All vertices of Bn, except two vertices v1 and v2 have degree 2 (Figure 3). So the two vertices v1 and v2
are mapped into each other under the elements of automorphism group. In fact each automorphism maps
the pages to each other. Note that as soon as the first page is mapped to the inverse of a page, the rest of
pages are mapped to inverse of themselves or to inverse of another page. Therefore |Aut(Bn)| = 2n!.

Theorem 2.5. The distinguishing number of Bn (n ≥ 2) is D(Bn) = d
√

ne.

Proof. First we show that D(Bn) > d
√

ne and next we present a distinguishing edge labeling such that it
obtains this bound. Let xi, yi be the labels of upper and lower vertices of i-th page respectively (except for
v1, v2 in Figure 3) and let L = {(1, 2), (xi, yi) | 1 6 i 6 n, xi, yi ∈ N} be the labeling of Bn such that (1, 2) is the
two labels that has been assigned to the vertices v1 and v2. If L is a distinguishing labeling for Bn, then it
has the following property:
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(i) For all i, j ∈ {1, . . . ,n}where j , i, (xi, yi) , (x j, y j),

because for every i, j ∈ {1, . . .n}, the map fi : V(Bn) → V(Bn) which maps v2i−1 and v2 j−1 to each other and
maps v2i and v2 j to each other and fixes the rest of vertices of Bn, is an automorphism of Bn.

So it can be obtained that with labels {1, . . . , s} we can make at most 2
(s

2
)

+ s numbers of the pairs (x, y)
such that they satisfy (i) (there are 2

(s
2
)

choices for pairs (x, y) such that x , y and (x, y) satisfies (i) and
since the pairs (i, i) for every i ∈ {1, . . . , s} are not counted in these 2

(s
2
)

choices, so we add s to 2
(s

2
)
). Hence

D(Bn) > min{s : 2
(s

2
)

+ s ≥ n} and it can be calculated that D(Bn) > d
√

ne.
To present the vertex labeling of Bn, note that the labels of v1 and v2 can be the same or distinct. Since

we would like to use least number of labels, observe that for this purpose, two labels that have been given
to v1 and v2 should be different, because if the label of vertices v1 and v2 is the same, then we should also
check xi , yi for each i (1 6 i 6 n). We assign the first page of Bn, the pair (1, 1) and the second, the pair
(2, 1). Now we assign the third page of Bn, the pair (2, 2) and the forth page, the pair (1, 2). Now we use the
new label 3 for the labeling next five pages. We assign these five pages the labels (3, 1), (3, 2), (3, 3), (1, 3),
and (2, 3), respectively. Note that if in the process of labeling, the same labels have been given to v1 and v2,
then commute them with two labels of the next page. Our method for labeling the vertices of book graph
have been shown for B10 in Figure 4. By this process, observe that the distinguishing number of Bn, D(Bn),
is the n-th term of the sequence {D(Bi)}which defines as follows:

{D(Bi)}i>1 = {−, 2, 2, 2, 3, 3, 3, 3, 3, 4, . . . , 4︸  ︷︷  ︸
7−times

, 5, . . . , 5︸  ︷︷  ︸
9−times

, . . . , m, . . . ,m︸   ︷︷   ︸
(2m−1)−times

, . . .}.

In fact,

D(Bn) = min{k :
k∑

i=1

(2i − 1) > n}.

By an easy computation, we see that

min{k :
k∑

i=1

(2i − 1) > n} = d
√

ne.

Therefore we have the result.

Figure 4: The vertex labeling of B10.
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Remark 2.6. The distinguishing index of Cartesian product of star K1,n with path Pm for m > 2 and n > 2 is
D′(K1,n�Pm) = d 2m−1

√
ne, unless m = 2 and n = r3 for some integer r. In the latter case D′(K1,n�P2) = 3

√
n + 1. ([4]).

Since Bn = K1,n�P2, using this equality we obtain the distinguishing index of book graph Bn.

3. Distinguishing Number (Index) of Corona of Two Graphs

In this section, we shall study the distinguishing number and the distinguishing index of corona product
of two graphs. The corona product G ◦H of two graphs G and H is defined as the graph obtained by taking
one copy of G and |V(G)| copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H.

Theorem 3.1. For every n ≥ 4, D(Pn ◦ K1) = (D′(Pn ◦ K1)) = 2.

Proof. Since |Aut(Pn ◦ K1)| = 2, so Pn ◦ K1 has only one non-trivial automorphism. Therefore D(Pn ◦ K1) =
D′(Pn ◦ K1) = 2.

Before presenting the main result for D(G ◦H), we explain the relationship between the automorphism
group of the graph G ◦ H with the automorphism groups of two connected graphs G and H such that
G , K1. Note that there is no vertex in the copies of H which has the same degree as a vertex in G. Because
if there exists a vertex w in one of the copies of H and a vertex v in G such that de1G◦Hv = de1G◦Hw, then
de1G(v) + |V(H)| = de1H(w) + 1. So we have de1H(w) + 1 > |V(H)|, which is a contradiction. By this note, we
state and prove the following theorem:

Theorem 3.2. For every two connected graphs G and H such that G , K1, we have |Aut(G◦H)| = |Aut(G)||Aut(H)|.

Proof. Let the vertex set of G be {v1, . . . , v|V(G)|} and the vertex set of i-th copy of H, H(i), be {w(i)
1 , . . . ,w

(i)
|V(H)|}.

Since there is no vertex in copies of H which has the same degree as a vertex in G, for every f ∈ Aut(G ◦H),
we have f |H ∈ Aut(H) and f |G ∈ Aut(G). In addition, for i, j ∈ {1, . . . , |V(G)|}we have

f (vi) = v j ⇐⇒ f (H(i)) = H( j).

Conversely, let ϕ ∈ Aut(G) and φ ∈ Aut(H) such that ϕ(vi) = v ji , where i, ji ∈ {1, . . . , |V(G)|}. Now we
define the following automorphism h of G ◦H:

h : G ◦H→ G ◦H
vi 7→ ϕ(vi) = v ji i, ji ∈ {1, . . . , |V(G)|},
w(i)

k 7→ (φ(wk))( ji) k ∈ {1, . . . , |V(H)|}.

Therefore |Aut(G ◦H)| = |Aut(G)||Aut(H)|.

Figure 5: The partition of the vertices of G ◦H by its labels.

By the elements of the automorphism group of G ◦H (Theorem 3.2), we have the following result.
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Theorem 3.3. Let G and H be two connected graphs and G , K1.

(i) If D(G) = 1, then D(G ◦H) = D(H).
(ii) D(G ◦H) = 1 if and only if D(G) = D(H) = 1.

Theorem 3.4. Let G and H be two connected graphs such that G , K1. If D(G) 6 D(H), then D(H) = D(G ◦H)

Proof. If D(G) = 1, then we have the result by Theorem 3.3, so we suppose that D(G) , 1. If we label
G ◦ H with less than D(H) labels in a distinguishing way, then we can find a non-identity automorphism
of H such as f , such that it preserves the labeling of H. Expanding f to G ◦ H such that f acts as the
identity function on G, we obtain a non-identity automorphism of G ◦ H preserving the labeling of G ◦ H,
which is contradiction. So we have D(H) 6 D(G ◦ H). Now we show the inequality D(H) > D(G ◦ H). By
the definition of distinguishing vertex labeling, the vertex set V(G) is partitioned to at most D(H)-classes
(because D(G) 6 D(H)), say, [1], [2], ..., [D(H)]. The vertices of the class [i] denoted by vi1, . . . , visi in Figure 5
where si is the size of the [i]-class and i = 1, . . . ,D(H). We label the vertices in the class [i] and si-copies of H
to obtain a distinguishing vertex labeling of G ◦ H as follows: we label all vertices in the class [i] with the
label i, and vertices in the si copies of H with D(H) labels in a distinguishing way where i = 1, . . . ,D(H). By
Theorem 3.2 this labeling is a distinguishing labeling of G ◦H, and so D(H) > D(G ◦H).

Theorem 3.5. Let G and H be two connected graphs such that D(G) > D(H). Then

D(H) 6 D(G ◦H) 6 D(H) + b
−(1 + D(H)) +

√
(D(H) − 1)2 + 4D(G)
2

c.

Proof. The proof of the left inequality is the same as the first part of the proof of Theorem 3.4. For the
second inequality, by the definition of distinguishing vertex labeling, the vertex set V(G) will be partitioned
to D(G)-classes, say, [1], [2], ..., [D(G)]. The vertices of the class [i] denoted by vi1, . . . , visi (i = 1, . . . ,D(G)) in
Figure 5. We label the vertices in the class [i] and si-copies of H to obtain a distinguishing vertex labeling of
G ◦H as follows:

Step 1) Labeling the vertices in the classes [i] and the vertices of si-copies of H for 1 ≤ i ≤ D(H):
We label all vertices in the class [i] with the label i, and vertices in the si copies of H with D(H) labels in

a distinguishing way.

Step 2) Labeling the vertices in the classes [i] and the vertices of si-copies of H, for D(H)+1 ≤ i ≤ 2D(H)+2:
Now for the labeling of the vertices of classes [i], (D(H) + 1 ≤ i ≤ 2D(H) + 1) we use the label i − D(H),

and for si copies of H, we add the number one to the label of each vertex of H in the prior step, i.e., if the
label of a vertex of H is l (1 6 l 6 D(H)) in distinguishing labeling of H with D(H) labels, then we replace it
by l + 1. For the class [2D(H) + 2] we use the label D(H) + 1 for the vertices in this class and we label s2D(H)+2
copies of H with D(H) labels in a distinguishing way.

Step 3) Labeling the vertices in the classes [i] and the vertices of si-copies of H, for 2D(H) + 3 ≤ i ≤
3D(H) + 6:

Now for the labeling of the vertices of classes [i], (2D(H)+3 ≤ i ≤ 3D(H)+4) we use the label i−(2D(H)+2),
and for si copies of H, we add the number two to the label of each vertex of H in the firs step, i.e., if the
label of a vertex of H is l (1 6 l 6 D(H)) in distinguishing labeling of H with D(H) labels, then we replace it
by l + 2. For the class [3D(H) + 5] we use the label D(H) + 2 for the vertices in this class and label s3D(H)+5
copies of H with D(H) labels in a distinguishing way. For the class [3D(H) + 6] we use the label D(H) + 2
for the vertices in this class and we label s3D(H)+6 copies of H with D(H) + 1 labels in a distinguishing way
(i.e., if the label of a vertex of H is l (1 6 l 6 D(H)) in distinguishing labeling of H with D(H) labels, then we
replace it by l + 1).

Continuing this method and by Theorem 3.2 it can be observed that this method makes a distinguishing
labeling with D(H) + min{k :

(∑k
i=0(D(H) + 2i)

)
> D(G)} labels. By an easy computation we get

min{k :

 k∑
i=0

(D(H) + 2i)

 > D(G)} = b
−(1 + D(H)) +

√
(D(H) − 1)2 + 4D(G)
2

c.
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So we have the result.

Theorem 3.6. Let H be a connected graph, then D(H) 6 D(K1 ◦H) 6 D(H) + 1.

Proof. First we prove D(H) 6 D(K1 ◦H). Suppose to the contrary that D(H) > D(K1 ◦H), so if we label K1 ◦H
in a distinguishing way with D(K1 ◦H) labels and transfer this labeling to H, then there exists a non-identity
automorphism of H such as f , that it preserves the labeling. Expanding f to K1 ◦H such that f acts as the
identity on K1, we have a non-identity automorphism of K1 ◦ H that it preserves the labeling, which is a
contradiction. Now we shall show that D(K1 ◦H) 6 D(H) + 1. For this purpose, we define a distinguishing
labeling of K1 ◦H with D(H) + 1 labels. First we label H with D(H) labels in a distinguishing way and next
assign a new label to the only vertex of K1. This labeling is a distinguishing labeling for K1 ◦H, because if f
is an automorphism of K1 ◦H preserving the labeling, then f (K1) = K1 and f |H ∈ Aut(H). Since we labeled
H in a distinguishing way, f |H is the identity automorphism. Therefore f is the identity automorphism on
K1 ◦H. Therefore, the result follows.

Here we study the distinguishing index of corona of two graphs. First we compute the distinguishing
index of some special cases and exclude them subsequently. The special cases are as follows:

D′(K1 ◦ K1) = 1, D′(K1 ◦ K2) = 3, D′(K2 ◦ K1) = 2, D′(K2 ◦ K2) = 2.

Theorem 3.7. Let G and H be two connected graphs such that G , K1 and D′(H) > 2, then D′(G ◦ H) 6
max{D′(G), d

√
D′(H)e}.

Proof. We define a distinguishing edge labeling for G ◦H with max{D′(G), d
√

D′(H)e} labels. First we label
G with the labels {1, . . . ,D′(G)} in a distinguishing way. Now we present a labeling for a copy of H and all
middle edges that are incident to this copy of H and G, and next we transfer this labeling to all copies of H
and their middle edges. For this we partition the edge set of H with respect to a distinguishing edge labeling
of H with the label set {1, . . . ,D′(H)}. So we have D′(H) classes of edges such that [i]-class (1 6 i 6 D′(H))
contains all the edges of H which they have the label i in the distinguishing edge labeling of H. It is clear
that there are vertices of H that are incident to the edges in different classes, such as [i] and [ j] with i > j. In
this case the middle edges incident to such vertex are considered as the middle edges of the [i]-class. The
new labeling of H and all its middle edges are as follows:

Step 1) We label all edges in class [1] with the label 1. Next we label all its middle edges that are incident
to a vertex in [1]-class, with the label 1. We label all edges in class [2] with the label 1. Next we label all its
middle edges that are incident to a vertex in [2]-class, with the label 2.

Step 2) We label all edges in class [3] with the label 2. Next we label all its middle edges that are incident
to a vertex in [3]-class with the label 1. We label all edges in class [4] with the label 2. Next we label all its
middle edges that are incident to a vertex in [4]-class with the label 2.

Step 3) We label all edges in class [5] with the label 1. Next we label all its middle edges that are incident
to a vertex in [5]-class with the label 3. We label all edges in class [6] with the label 2. Next we label all its
middle edges that are incident to a vertex in [6]-class with the label 3. We label all edges in class [7] with
the label 3. Next we label all its middle edges that are incident to a vertex in [7]-class with the label 3.

Step 4) We label all edges in class [8] with the label 3. Next we label all its middle edges that are incident
to a vertex in [8]-class with the label 1. We label all edges in class [9] with the label 3. Next we label all its
middle edges that are incident to a vertex in [9]-class with the label 2.

Continuing this method, in the next step we label all edges in class [10] with the label 4 and next we label
all its middle edges that are incident to a vertex in [10]-class with the label 1, we obtain a labeling for G ◦H
that is distinguishing. Because if f is an automorphism of G◦H preserving the labeling, then the restriction
of f to G is the identity automorphism of G. On the other hand, for each non-identity automorphism of H,
there exists an edge in a class that is mapped to an edge in another class. So by considering our labeling
of H and all its middle edges we obtain that the restriction of f to H is the identity automorphism of H.
Therefore f is the identity automorphism of G ◦ H. Since we used min{k :

∑k
i=1(2i − 1) > D′(H)} labels for
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the labeling of copies of H (and since this number is equal with d
√

D′(H)e) and used D′(G) labels for G, so
we have the result.

Theorem 3.8. Let G and H be two connected graphs of orders n > 3 and m > 3, respectively. If D′(G) = D′(H) = 1
then D′(G ◦H) = 1.

Proof. Since the orders of G and H are greater than two and D′(G) = D′(H) = 1, so |Aut(G)| = |Aut(H)| = 1.
By Theorem 3.2, |Aut(G ◦H)| = 1, and so D′(G ◦H) = 1.

Theorem 3.9. Let H be a connected graph of order n > 3. Then D′(K1 ◦H) 6 D′(H) + 1.

Proof. We label the edges of H with the labels {1, . . . ,D′(H)} in a distinguishing way and next label all
its middle edges with the new label 0. If f is an automorphism of K1 ◦ H preserving the labeling, then
f (K1) = K1 and f |H is an automorphism of H. Since we labeled H in a distinguishing way, so this labeling
is a distinguishing labeling for K1 ◦H. Hence D′(K1 ◦H) 6 D′(H) + 1.

Theorem 3.10. Let G be a connected graph such that G , K1. Then D′(G ◦ K2) 6 max{D′(G), 2}.

Proof. If we label G with D′(G) labels in a distinguishing way and label all copies of K2 with the label 1
and next assign the two middle edges of each copy of K2, the labels 1 and 2, then we have a distinguishing
labeling of G , K1 with max{D′(G), 2} labels.

Theorem 3.11. Let G and H be two connected graphs such that G , K1 and H , K2.

(i) If |Aut(G)| = 1, then D′(G ◦H) 6 min{D′(H), |V(H)|}.
(ii) If |V(G)| 6 |V(H)| + 1 and D′(H) = 1, then D′(G ◦H) 6 2.

Proof. (i) If |Aut(G)| = 1, then every element of the automorphism group of G ◦ H treats as the identity
on G. If |V(H)| < D′(H) then we assign the edges between G and H(i), the labels 1, 2, . . . , |V(H)| for
1 6 i 6 |V(G)| and assign the remaining edges the label 1. If |V(H)| > D′(H), then we label each copy
of H with D′(H) labels in a distinguishing way and assign the remaining edges the label 1. In both
cases we made a distinguishing edge labeling, and so the result follows.

(ii) Let the vertex set of G be {v1, . . . , v|V(G)|} and the vertex set of i-th copy of H be {w(i)
1 , . . . ,w

(i)
|V(H)|}.

Let eik be the edge from vi to w(i)
k . If |Aut(G)| > 2, then there exists a non-trivial automorphism

ϕ of G ◦ H and r, s ∈ {1, . . . , |V(G)|}, r , s such that ϕ(vr) = vs. So erk is mapped to esk′ under ϕ
where k, k′ ∈ {1, . . . , |V(H)|}. Now we assign ei1, . . . , ei(i−1) the label 2 for 2 6 i 6 |V(G)|, and assign
the remaining edges the label 1. Clearly, this labeling is distinguishing (see Theorem 3.2), and so
D′(G ◦H) 6 2.

Corollary 3.12. Let G and H be two connected graphs such that G , K1 and H , K2.

(i) If D(G) = 1, then D′(G ◦H) 6 min{D′(H), |V(H)|}.
(ii) If |V(G)| 6 |V(H)| + 1 and D′(H) = 1, then D′(G ◦H) 6 2.

Proof. (i) We note that for every graph G, D(G) = 1 if and only if |Aut(G)| = 1. So we have the result by
Theorem 3.11 (i).

(ii) It is easy to see that for every G, D(G) > 2 if and only if |Aut(G)| > 2. So we have the result by Theorem
3.11 (ii).

Now, we shall present an upper bound for D′(G ◦ H) with D′(H) = 1 without any condition on |V(G)|.
For this purpose we need two following parameters:

x′r =


1 r = 1
m − 1 r = 2∑m

ir−2=r−1 . . .
∑m

i2=i3

∑m
i1=i2 (m − i1) r > 3,



S. Alikhani, S. Soltani / Filomat 31:14 (2017), 4393–4404 4403

y′r =


1 r = 1
m r = 2∑r−1

i=0
(r−1

i
)
xi+1 r > 3.

In fact, x′r is the number of copies of H in G ◦H, that their middle edges (edges between H and G), have
been labeled with r labels such that these r labels are used in each copy at least one time. Also y′r is the
number of copies of H that their middle edges, the edges between H and G, have been labeled with the
labels 1, . . . , r such that the label r is used in each copy at least one time.

Theorem 3.13. Let G and H be the two connected graphs of orders n and m, respectively such that G , K1 and
H , K2 and D′(H) = 1. If D(G) > 2 then D′(G ◦H) 6 min{D′(G),min{k :

∑k
r=1 yr > n}}.

Proof. Similar to the proof of part (ii) of Theorem 3.11, let the vertex set of G be {v1, . . . , v|V(G)|}, the vertex set
of i-th copy of H be {w(i)

1 , . . . ,w
(i)
|V(H)|} and eik be the edge from vi to w(i)

k . We present an edge labeling of G ◦H
that is continuation of used edge labeling in the proof of part (ii) of Theorem 3.11. We have the following
steps:

Step 1) We assign the edges e11, . . . , e1m the label 1. Set x′1 = 1 and y′1 = 1.

Step 2) We assign the edges ei1, . . . , ei(i−1) the label 2 and eii, . . . , eim the label 1, for 2 6 i 6 m. Set x′2 = m−1.

Step 3) Label The edges e(m+1)1, . . . , e(m+1)m with the label 2.

So we used the label 2 for labeling the edges between G and m copies of H. Set y′2 = m.

Step 4) Label e(m+2)1, . . . , e(m+2)m with the label 3. Next we do the same work as in Step 2 with the label
1, 3 and 2, 3. So we labeled the edges ei1, . . . , eim for m + 3 6 i 6 3m.

Step 5) In this step we use the labels 1, 2, 3 for the labeling of middle edges. We assign the first three
edges ei1, ei2, ei3 the labels 1, 2, 3 for 3m + 1 6 i 6 3m + x′3, where x′3 =

∑m
j=2(m − j). For labeling ei4, . . . , eim we

use the label 1, 2, 3 such that (L(i)
1 ,L

(i)
2 ,L

(i)
3 ) are distinct for each 3m + 1 6 i 6 3m + x′3, where L(i)

j is the number
of the label j in edges ei1, . . . , eim. It can be seen that this number is x′3 =

∑m
j=2(m − j).

So we used the label 3 for labeling the edges between G and 1 + 2(m − 1) + x′3 copies of H. Set
y′3 = 1 + 2(m − 1) + x′3.

By continuing this method we get:

x′r =


1 r = 1
m − 1 r = 2∑m

ir−2=r−1 . . .
∑m

i2=i3

∑m
i1=i2 (m − i1) r > 3,

y′r =


1 r = 1
m r = 2∑r−1

i=0
(r−1

i
)
xi+1 r > 3.

With this method we have labeled (distinguishing) all edges between the vertices of G and the vertices
of copies of H. We use the label 1 for the rest of edges. Therefore D′(G ◦H) 6 min{k :

∑k
r=1 yr > n}.

On the other hand if we label G in a distinguishing way with D′(G) labels and assign the remaining
edges the label 1, then we obtain a distinguishing labeling of G ◦ H with D′(G) labels, because D′(H) = 1
and H , K2. Therefore by the above paragraph we have the result.
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