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1. Introduction

After Phillips [18], the approximation properties for q-analogue of operators were studied by several
researchers .
We begin with some notations and definitions of q-calculus. For any non-negative integer r, the q-integer
of the number r is defined as

[r]q =


1 − qr

1 − q
if q , 1

r if q = 1
,

where q is a positive real number.
The q-factorial is defined as

[r]q! =

{
[1]q [2]q ... [r]q if r = 1, 2, ...

r if r = 0.

For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are defined as[ n
r

]
q

=
[n]q!

[r]q! [n − r]q!
.

Details on q-integers can be found in [2, 4, 14].
Bernstein type rational functions were defined by Balázs [5]. Balázs and Szabados modified and studied

approximation properties of these operators [6].
The q-analogue of the Balázs-Szabados operators were defined by Dogru [8] as follows

Rn
(

f ; q, x
)

=
1

n−1∏
s=0

(
1 + qsanx

)
n∑

j=0

q j( j−1)/2 f


[
j
]

q

bn

 [ n
j

]
q

(anx) j , (1)
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where x ∈ [0,∞), an = [n]β−1
q , bn = [n]βq for all n ∈N, q ∈ (0, 1] and 0 < β ≤ 2

3 .
Dogru also gave the following equalities

Rn
(
e0; q, x

)
= 1, (2)

Rn
(
e1; q, x

)
=

x
1 + anx

, (3)

Rn
(
e2; q, x

)
=

[n − 1]q

[n]q

q2x2

(1 + anx)
(
1 + anqx

) +
x

bn (1 + anx)
, (4)

where ek (x) = xk for k = 0, 1, 2.
In (4), using the equality [n]q = q [n − 1]q + 1, we get

Rn
(
e2; q, x

)
=

(
1 − an

bn

)
qx2

(1 + anx)
(
1 + anqx

) +
x

bn (1 + anx)
. (5)

We will use (5) instead of (4) throughout the paper.
The rational complex Balázs-Szabados operators were defined by Gal in [11]. He studied approximation

properties of these operators on compact disks. In [13], the complex q-Balázs-Szabados operators were
defined and the approximation properties of these operators were studied on compact disks.

C [0,A] denotes the space of all continuous functions on [0,A], A > 0 with the norm
∥∥∥ f

∥∥∥ = max
x∈[0,A]

∣∣∣ f (x)
∣∣∣

for all f ∈ C [0,A] .
We define the following q-Balázs-Szabados-Stancu operators

R(α,γ)
n,q

(
f ; q, x

)
=

n∑
j=0

f


[
j
]

q + [α]q

bn +
[
γ
]

q

 pn, j
(
x; q

)
,

where f is a real valued function defined on the all positive axis, an = [n]β−1
q , bn = [n]βq , [α]q =

1 − qα

1 − q
,[

γ
]

q =
1 − qγ

1 − q
for all n ∈N , q ∈ (0, 1], 0 < β ≤

2
3

and 0 ≤ α ≤ γ,

pn, j
(
x; q

)
=

q j( j−1)/2
[ n

j

]
q

(anx) j

n−1∏
s=0

(
1 + qsanx

) (6)

and

n−1∏
s=0

(
1 + qsanx

)
=

n∑
j=0

q j( j−1)/2
[ n

j

]
q

(anx) j . (7)

It is clear that R(α,γ)
n,q are linear and positive operators.

We have the following lemma for the operators R(α,γ)
n,q .
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Lemma 1.1. The following equalities are satisfied for the operators R(α,γ)
n,q

R(α,γ)
n,q (e0; x) = 1, (8)

R(α,γ)
n,q (e1; x) =

bnx(
bn +

[
γ
]

q

)
(1 + anx)

+
[α]q

bn +
[
γ
]

q
, (9)

R(α,γ)
n,q (e2; x) =

b2
n

(
1 − an

bn

)
qx2(

bn +
[
γ
]

q

)2
(1 + anx)

(
1 + anqx

) +
bn

(
2 [α]q + 1

)
x(

bn +
[
γ
]

q

)2
(1 + anx)

+
[α]2

q(
bn +

[
γ
]

q

)2 , (10)

where ek (x) = xk for k = 0, 1, 2.

Proof. From (7), it is clear that

R(α,γ)
n,q (e0; x) = 1.

With direct computation, we get

R(α,γ)
n,q (e1; x) =

bn

bn +
[
γ
]

q
Rn

(
e1; q, x

)
+

[α]q

bn +
[
γ
]

q
Rn

(
e0; q, x

)
.

Using (2) and (3), we obtain desired result.
Similarly, with direct computation, we get

R(α,γ)
n,q (e2; x) =

b2
n(

bn +
[
γ
]

q

)2 Rn
(
e2; q, x

)
+

2 [α]q bn(
bn +

[
γ
]

q

)2 Rn
(
e1; q, x

)
+

[α]2
q(

bn +
[
γ
]

q

)2 Rn
(
e0; q, x

)
.

Using (2) ,(3) and (5), we obtain desired result.

Lemma 1.2. It holds the following equalities for the operators R(α,γ)
n,q

R(α,γ)
n,q ((e1 − x) ; x) = −

[
γ
]

q x(
bn +

[
γ
]

q

)
(1 + anx)

−
anx2

1 + anx
+

[α]q

bn +
[
γ
]

q
(11)

and

R(α,γ)
n,q

(
(e1 − x)2 ; x

)
=

a2
nqx4 + an

(
qn + 1

)
x3

(1 + anx)
(
1 + anqnx

) − 2bnanqx3(
bn +

[
γ
]

q

)
(1 + anx)

(
1 + anqx

)
+

b2
n

(
q − 1 − q an

bn
+

[γ]2
q

b2
n

)
x2

(
bn +

[
γ
]

q

)2
(1 + anx)

(
1 + anqx

) +
bn

(
2 [α]q + 1

)
x(

bn +
[
γ
]

q

)2
(1 + anx)

+
[α]2

q(
bn +

[
γ
]

q

)2 −
2 [α]q x

bn +
[
γ
]

q
. (12)

Proof. From Lemma 1.1, the proof can be obtained easily, so we omit the proof.
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2. Statistical Convergence of the Operators

The concept of the statistical convergence was introduced by Fast[9].
In this section, we will give a Bohman-Korovkin type statistical approximation theorem.
Firstly, we recall some definitions about the statistical convergence. The density of a set K ⊂ N is defined
by

δ {k ≤ n : k ∈ K} ,

The natural density, δ, of a set K ⊂N is defined by

lim
n→∞

1
n
|Kn| ,

provided the limits exist [16].
A sequence x = (xk) is called statistically convergent to a number L if, for every ε > 0

δ {k : |xk − L| ≥ ε} = 0,

and it is denoted as st − lim
k

xk = L.

Any convergent sequence is statistically convergent but not conversely. For example, the sequence

xk =

{
L1, if k = m2

L2, if k , m2 , for m = 1, 2, ...

is statistically convergent to L2 but not convergent in the ordinary sense when L1 , L2.
Now, we consider a sequence q =

(
qn

)
satisfying

st − lim
n

qn = 1 and st − lim
n

qn
n = c, 0 ≤ c < 1. (13)

Under this conditions given in (13), it is clear that

st − lim
n

an = st − lim
n

1
bn

= st − lim
n

an

bn
= st − lim

n

1
bn +

[
γ
]

q
= 0.

The useful connections of Korovkin type approximation theory were given by Altomare and Campiti
in [1].
Recently, the statistical approximation of operators has also been investigated by several authors (see
[7],[3],[17], [12], [19], [20], [22], [23], [21] and [24]).

Gadjiev and Orhan [10] proved the following Bohman-Korovkin type statistical approximation theorem
for any sequence of positive linear operators.

Theorem 2.1. ([10]) If the sequence of positive linear operators An : C [a, b]→ B [a, b] satisfies the conditions

st − lim
n
‖An (eν) − eν‖ = 0

with eν (t) = tν for ν = 0, 1, 2, then for any f ∈ C [a, b] , we have

st − lim
n

∥∥∥An
(

f
)
− f

∥∥∥ = 0.



E. Yıldız Özkan / Filomat 28:9 (2014), 1943–1952 1947

Now, we can give the following main result for the operators R(α,γ)
n,q .

Theorem 2.2. Let q =
(
qn

)
with 0 < qn ≤ 1 be a sequence satisfying the conditions given in (13). If f is a continuous

function on [0,A] with 0 < A <
1
an

and bounded on the all positive axis, then it holds for the operators R(α,γ)
n,q

st − lim
n

∥∥∥∥∥R(α,γ)
n,qn

(
f ; .

)
− f

∥∥∥∥∥ = 0.

Proof. From (8) in Lemma 1.1, it is clear that

st − lim
n

∥∥∥∥∥R(α,γ)
n,qn

(e0; .) − e0

∥∥∥∥∥ = 0. (14)

Using (11) in Lemma 1.2, we can write∣∣∣∣∣R(α,γ)
n,qn

(e1; x) − e1 (x)
∣∣∣∣∣ ≤

[
γ
]

qn
|x|(

bn +
[
γ
]

qn

)
|1 − an |x||

+
an |x|2

|1 − an |x||
+

[α]qn

bn +
[
γ
]

qn

. (15)

Considering 0 < A < 1
an

, taking maximum of both sides of (15) on C [0,A] , we get∥∥∥∥∥R(α,γ)
n,qn

(e1; .) − e1

∥∥∥∥∥ ≤
[
γ
]

qn
A(

bn +
[
γ
]

qn

)
(1 − anA)

+
anA2

1 − anA
+

[α]qn

bn +
[
γ
]

qn

. (16)

For a given ε > 0, let us define the following sets:

D : =
{
k :

∥∥∥∥∥R(α,γ)
k,qk

(e1; .) − e1

∥∥∥∥∥ ≥ ε} ,
D1 : =

k :

[
γ
]

qk
A(

bk +
[
γ
]

qk

)
(1 − akA)

≥
ε
3

 ,
D2 : =

{
k :

akA2

1 − akA
≥
ε
3

}
,

D3 : =

k :
[α]qk

bk +
[
γ
]

qk

≥
ε
3

 .
From (16), since D ⊆ D1 ∪D2 ∪D3, we get

δ
{
k ≤ n :

∥∥∥∥∥R(α,γ)
k,qk

(e1; .) − e1

∥∥∥∥∥ ≥ ε} ≤ δ

k ≤ n :

[
γ
]

qk
A(

bk +
[
γ
]

qk

)
(1 − akA)

≥
ε
3


+δ

{
k ≤ n :

akA2

1 − akA
≥
ε
3

}
+ δ

k ≤ n :
[α]qk

bk +
[
γ
]

qk

≥
ε
3

 .
Under the condition given in (13), it is clear that

st − lim
n

[
γ
]

qn
A(

bn +
[
γ
]

qn

)
(1 − akA)

= st − lim
n

anA2

1 − anA
= st − lim

n

[α]qn

bn +
[
γ
]

qn

= 0,
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which implies

st − lim
n

∥∥∥∥∥R(α,γ)
n,qn

(e1; .) − e1

∥∥∥∥∥ = 0. (17)

Using (10) in Lemma 1.1, we can write

R(α,γ)
n,qn

(e2; .) − e2 (x) = −
a2

nqnx4 + an
(
qn + 1

)
x3

(1 + anx)
(
1 + anqnx

) +

b2
n

(
qn − 1 − qn

an
bn
−

2[γ]qn
bn
−

[γ]2
qn

b2
n

)
x2

(
bn +

[
γ
]

qn

)2
(1 + anx)

(
1 + anqnx

) (18)

+
bn

(
2 [α]qn

+ 1
)

x(
bn +

[
γ
]

qn

)2
(1 + anx)

+
[α]2

qn(
bn +

[
γ
]

qn

)2 .

Considering 0 < A <
1
an
, taking absolute value both sides of (18), and passing to norm on C [0,A]

∥∥∥∥∥R(α,γ)
n,qn

(e2; .) − e2

∥∥∥∥∥ ≤
a2

nqnA4 + an
(
qn + 1

)
A3

(1 − anA)
(
1 − anqnA

) +

b2
n

(
1 − qn + qn

an
bn

+
2[γ]qn

bn
+

[γ]2
qn

b2
n

)
A2

(
bn +

[
γ
]

qn

)2
(1 − anA)

(
1 − anqnA

) (19)

+
bn

(
2 [α]qn

+ 1
)

A(
bn +

[
γ
]

qn

)2
(1 − anA)

+
[α]2

qn(
bn +

[
γ
]

qn

)2 .

If we choose

λn =
a2

nqnA4 + an
(
qn + 1

)
A3

(1 − anA)
(
1 − anqnA

) ,
θn =

b2
n

(
1 − qn + qn

an
bn

+
2[γ]qn

bn
+

[γ]2
qn

b2
n

)
A2

(
bn +

[
γ
]

qn

)2
(1 − anA)

(
1 − anqnA

) ,
ηn =

bn

(
2 [α]qn

+ 1
)

A(
bn +

[
γ
]

qn

)2
(1 − anA)

,

ϕn =
[α]2

qn(
bn +

[
γ
]

qn

)2

then, under the conditions given in (13), we have

st − lim
n
λn = st − lim

n
θn = st − lim

n
ηn = st − lim

n
ϕn = 0. (20)
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Again for a given ε > 0, let us define the following sets:

E : =
{
k :

∥∥∥∥∥R(α,γ)
k,qk

(
e2; qk, .

)
− e2

∥∥∥∥∥ ≥ ε} ,
E1 : =

{
k : λk ≥

ε
4

}
, E2 :=

{
k : θk ≥

ε
4

}
,

E3 : =
{
k : ηk ≥

ε
4

}
, E4 :=

{
k : ϕk ≥

ε
4

}
.

It is clear that E ⊆ E1 ∪ E2 ∪ E3 ∪ E4, which implies

δ
{
k ≤ n :

∥∥∥∥∥R(α,γ)
k,qk

(e2; .) − e2

∥∥∥∥∥ ≥ ε} ≤ δ
{
k ≤ n : λk ≥

ε
4

}
+ δ

{
k ≤ n : θk ≥

ε
4

}
+δ

{
k ≤ n : ηk ≥

ε
4

}
+ δ

{
k ≤ n : ϕk ≥

ε
4

}
.

From (19), we obtain that

st − lim
n

∥∥∥∥∥R(α,γ)
n,qn

(e2; .) − e2

∥∥∥∥∥ = 0. (21)

From (15), (17) and (21) and taking into account Theorem 2.1, the proof is finished.

3. Rate of Statistical Convergence

In this part, we will give the order of statistical approximation of the operators R(α,γ)
n,q by means of

modulus of continuity and the elements of Lipschitz class functionals.
Let f ∈ C [0,A]. The modulus of continuity of f is defined by

ω
(

f ; δ
)

= sup
|t−x|≤δ

x,t∈[0,A]

∣∣∣ f (t) − f (x)
∣∣∣ .

It is clear that lim
δ→0+

ω
(

f ; δ
)

= 0 for all f ∈ C [0,A] . Also, we have

∣∣∣ f (t) − f (x)
∣∣∣ ≤ ω (

f ; δ
) ( |t − x|

δ
+ 1

)
(22)

for any δ > 0 and each x, t ∈ [0,A] .
A function f ∈ C [0,A] belongs to LipM (θ) for M > 0 and 0 < θ ≤ 1, provided that∣∣∣ f (

y
)
− f (x)

∣∣∣ ≤ ∣∣∣y − x
∣∣∣θ , for all x, y ∈ [0,A] . (23)

Theorem 3.1. Let q =
(
qn

)
with 0 < qn ≤ 1 be a sequence satisfying the conditions given in (13). If f is a continuous

function on [0,A] and bounded on the all positive axis, then it holds∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤ 2ω
(

f ; δn (x)
)
,

where

δn (x) =
(
R(α,γ)

n,qn

(
(e1 − x)2 ; x

))1/2
. (24)
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Proof. From the linearity and positivity of the operators R(α,γ)
n,qn

and using (22), we obtain∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤ R(α,γ)
n,qn

(∣∣∣ f (t) − f (x)
∣∣∣ ; x

)
(25)

≤ ω
(

f ; δ (x)
) {

1 +
1
δ (x)

R(α,γ)
n,qn

(|e1 − x| ; x)
}
.

In (25), using Cauchy- Schwarz inequality, we get∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤ ω (
f ; δ (x)

) {
1 +

1
δ (x)

(
R(α,γ)

n,qn

(
(e1 − x)2 ; x

))1/2
}
.

Finally, choosing δ (x) = δn (x) as in (24), the proof is complete.

Theorem 3.2. Let q =
(
qn

)
with 0 < qn ≤ 1 be a sequence satisfying the conditions given in (13). If f is a continuous

function on [0,A] and bounded on the all positive axis then we have∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤M {δn (x)}θ ,

where δn (x) is given as in (24).

Proof. Using (23), we can write∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤ R(α,γ)
n,qn

(∣∣∣ f (t) − f (x)
∣∣∣ ; x

)
≤ MR(α,γ)

n,qn

(
|t − x|θ ; x

)
.

Applying the Hölder inequality,we get∣∣∣∣∣R(α,γ)
n,qn

(
f ; x

)
− f (x)

∣∣∣∣∣ ≤M
(
R(α,γ)

n,qn

(
(e1 − x)2 ; x

))θ/2
,

and choosing δn (x) as given in (24), the proof is complete.

4. An r-th Order Generalization of Operators R(α,γ)
n,q

By C(r) [0,A] we mean the space of all functions f for which their r-th derivative f (r) with f (0) (x) = f (x)
are continuous on [0,A] and bounded all positive axis for A > 0 and r = 0, 1, 2... .

Now, using the similar method by Kirov and Popova [15], we consider the following r-th order
generalization

R(α,γ)
n,q,r

(
f ; x

)
=

n∑
j=0

r∑
i=0

pn, j
(
x; q

) f (i)
(
ξn, j

(
q
))

i!

(
x − ξn, j

(
q
))i
, (26)

where n ∈N, ξn, j
(
q
)

:=
[ j]q+[α]q

bn+[γ]q
, f ∈ C(r) [0,A], pn, j

(
x; q

)
is as given in (6), an = [n]β−1

q , bn = [n]βq with 0 < β ≤ 2
3

and 0 ≤ α ≤ γ.

If we take r = 0 in (26) then we get R(α,γ)
n,q,0

(
f ; x

)
= R(α,γ)

n,q
(

f ; x
)
.

We have the following approximation theorem for the operators R(α,γ)
n,q,r .
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Theorem 4.1. If f ∈ C(r) [0,A] such that f (r)
∈ LipM (θ) then we have∣∣∣∣∣R(α,γ)

n,q,r
(

f ; x
)
− f (x)

∣∣∣∣∣ ≤ MθB (θ, r)
(r − 1)! (θ + r)

∣∣∣∣∣R(α,γ)
n,q

(
ϕ; x

)∣∣∣∣∣ ,
where ϕ

(
y
)

=
∣∣∣y − x

∣∣∣θ+r
for each x ∈ [0,A] and B (θ, r) denotes the Beta function.

Proof. From (26), we can write

f (x) − R(α,γ)
n,q,r

(
f ; x

)
=

n∑
j=0

pn, j
(
x; q

)  f (x) −
r∑

i=0

f (i)
(
ξn, j

(
q
))

i!

(
x − ξn, j

(
q
))i

 . (27)

Using the well-known Taylor’s formula, we get

f (x) −
r∑

i=0

f (i)
(
ξn, j

(
q
))

i!

(
x − ξn, j

(
q
))i

= (28)

(
x − ξn, j

(
q
))r

(r − 1)!

1∫
0

(1 − t)r−1
[

f (r)
(
ξn, j

(
q
)

+ t
(
x − ξn, j

(
q
)))
− f (r)

(
ξn, j

(
q
))]

dt.

Since f (r)
∈ LipM (θ) , we see that∣∣∣∣ f (r)
(
ξn, j

(
q
)

+ t
(
x − ξn, j

(
q
)))
− f (r)

(
ξn, j

(
q
))∣∣∣∣ ≤Mtθ

∣∣∣x − ξn, j
(
q
)∣∣∣θ . (29)

Now, using (29) in (28) and considering the fact that

1∫
0

(1 − t)r−1 tθdt =
θB (θ, r)
θ + r

,

we have∣∣∣∣∣∣∣ f (x) −
r∑

i=0

f (i)
(
ξn, j

(
q
))

i!

(
x − ξn, j

(
q
))i

∣∣∣∣∣∣∣ ≤ MθB (θ, r)
(r − 1)! (θ + r)

∣∣∣x − ξn, j
(
q
)∣∣∣r+θ . (30)

Taking into account (30) in (27), we get the desired result.

Remark 4.2. The function ϕ in Theorem 4.1 belongs to C [0,A] and ϕ (x) = 0. Also, for any x, y ∈ [0,A], r ∈ N,
and θ ∈ [0, 1) , since∣∣∣ϕ (

y
)
− ϕ (x)

∣∣∣ ≤ ∣∣∣y − x
∣∣∣r ∣∣∣y − x

∣∣∣θ ≤ ∣∣∣y − x
∣∣∣θ ,

we get that ϕ ∈ Lip1 (θ) .

Under the light of Remark 4.2, the following result is obtained from Theorem 3.1 and Theorem 3.2.
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Corollary 4.3. Let q =
(
qn

)
with 0 < qn ≤ 1 be a sequence satisfying the conditions given in (13). If f ∈ C(r) [0,A]

such that f (r)
∈ LipM (θ) then we have

i)
∣∣∣∣∣R(α,γ)

n,qn,r
(

f ; x
)
− f (x)

∣∣∣∣∣ ≤ 2MθB (θ, r)
(r − 1)! (θ + r)

ω
(
ϕ; δn (x)

)
,

ii)
∣∣∣∣∣R(α,γ)

n,qn,r
(

f ; x
)
− f (x)

∣∣∣∣∣ ≤ MθB (θ, r)
(r − 1)! (θ + r)

{δn (x)}θ ,

where δn (x) as given in (24).

Remark 4.4. δn (x) , given in (24), is defined on [0,A] for sufficiently large natural numbers. Under the conditions
given in (13), it is clear that st − lim

n
δn (x) , which implies st − lim

n
ω

(
f ; δn (x)

)
= 0.

Consequently, Theorem 3.1 and Theorem 3.2 give us the rate of statistical convergence of the operators R(α,γ)
n,qn

(
f ; x

)
to

f (x) on [0,A] .

Remark 4.5. Under the hypothesis of Corollary 4.3, we see that st − lim
n
ω

(
ϕ; δn (x)

)
= 0 since st − lim

n
δn (x) .

Considering Theorem 4.1, (i) and (ii) in Corollary 4.3 give us the rate of statistical convergence of the operators

R(α,γ)
n,qn,r

(
f ; x

)
to f (x) on [0,A] provided that f ∈ C(r) [0,A] such that f (r)

∈ LipM (θ) for r ∈N.
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