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Differences of Composition Operators from
Weighted Bergman Spaces to Bloch Spaces
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Abstract. The boundedness and compactness of the differences of two composition operators from
weighted Bergman spaces to Bloch spaces in the unit disk are investigated in this paper.

1. Introduction

Let D denote the open unit disk in the complex plane C and H(D) the space of all analytic functions in
D. For a € D, let 0, be the Mobius transformation of D exchanging 0 for a, namely 0,(z) = ==, z € D. Let
p(z,a) denote the pseudo-hyperbolic distance between z and 4, i.e.,

—Z

e = lon@ = |12

For 0 < p < o and a > -1, the weighted Bergman space, denoted by A’, is the set of all functions
f € H(D) satisfying
I, = (a+ 1)f f@P (1 - 12 dA(z) < oo,
@ D

where dA is the normalized Lebesgue area measure in D such that A(D) = 1.
The Bloch space, denoted by % = %(D), is the set of all f € H(D) such that
B(f) = sup(1 - lzP)If'(2)] < .
zeD
Under the norm |||l = |f(0)| + B(f), the Bloch space is a Banach space.

Throughout the paper, S(D) denotes the set of all analytic self-maps of D. Associated with ¢ € S(D) is
the composition operator C, defined by

(CpN2) = f@(2)),

for f € H(D). For a general reference on composition operator see the book [3]. For some results on

composition are related operators from or into Bergman spaces and Bloch-type spaces see, for example,
[1, 10-16, 22-24, 28, 31, 33] and the related references therein.
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To understand the topological structure of the set of composition operators on some function spaces,
many researchers recently studied the differences of two composition operators, i.e.,

T=C,-Cy,

where ¢, € S(D). For the study of differences of composition operators, see, for example, [2, 49, 17—
21,25-27, 29, 30] and the references therein.

Motivated by [9], here we give some necessary and sufficient conditions for the boundedness and
compactness of the differences of two composition operators from weighted Bergman spaces into Bloch
spaces.

Constants are denoted by C in this paper, they are positive and not necessary the same in each occurrence.

2. Main Results and Proofs
In this section we give our main results. In order to prove the main results of this paper, the following
auxiliary lemmas are needed. The first lemma can be found, for example, in [11].

Lemmal. Let0<p < coand a > —1. If f € AL, then

fansc— D% g porsc—0% @
(- (1-1zP) 7

Lemma 2. Let 0 < p < oo, > —1. Then there exists a constant C > 0 such that

2+a+p 2+a+p

7 (@)~ A=) f@w)l < Cplz,w)

sup |(1 - |zP)
fEBAg
forz,w € D, where B, = {f e A ||f||A§ <1}
Proof. From [20], we see that

(1= 2P f(z) = (1 = [wP) f(w)] < Cp(z, w) sup(1 — |z*)F| £ (2)]

zeD

for any f € H(D). Hence
(1= 12P) £ (2) = (1 = [wP)P £ (w)] < Cp(z, w) Sug(l - 2PYIf @)

2+a+p

-

Lemma 3. [11] Let 0 < p < 00,a > =1 and ¢ € S(D). Then C, : AL, — % is compact if and only if C, : A}, — 2
is bounded and

_ -2 ’
(1-1z| )I@@ ~ 0. )

for any f € H(D). Then the result follows by Lemma 1 with § =

lim
PO A - lp2)P)

The following lemma can be proved in a standard way (see, e.g., Proposition 3.11 in [3]).

Lemma 4. Let ¢,¢ € S(D) and 0 < p < co, > —1. Then C, — Cy : A, — % is compact if and only if
Cp — Cy : Ab > % is bounded and for any bounded sequence { filken in % which converges to zero uniformly on
compact subsets of D, ||(Cy, — Cy) fillz — 0 as k — oo.

We define
(1-12P¢'(z)
2+a+p 7

A -lp@P) 7

1=z ()

Tp(2) = pg
A-lpE@P) 7

52@(2):=
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Now we are in a position to state and prove our main results in this paper.
Theorem 1. Let ¢, ¢ € S(D) and 0 < p < oo, > —1. Then the following statements are equivalent.
(i) Cp — Cy : A, > B is bounded;
(ii)
sup |Z,(2)|p(p(2), P(z)) < 0o and sup|Zy(z) — Zy(2)| < oo;
z€D zeD
(iii)
sup |2y (2)lp(p(z), P(z)) < oo and sup|Z,(z) — Dy(2)| < co.

zeD zeD
Proof. (i) = (ii). Assume that C, — Cy, : A" — % isbounded. Fora € D witha # 0, set

Py
) = pU-) o
Q+a+pual-az)

and

pla—z)(1 - |af) N p*(1 - lal?) _ @
Qia+2pal-a2) 7 Qta+2p)Qt+atpil-az)

9a(2) =

Then it is easy to check that f,, g, € Al,. Moreover sup,_p, |l fall v and sup, ., [|gall4» are bounded. Fix w € D
with p(w) # 0, we have

@ > Gy~ Codfyulls 2 sup(l ~ EP)(Cp =~ Cy)fow) @)
‘G—WHG—WWWW%@_ﬂ—mﬂﬂﬂwMHWW)
(1-lp@)R) 7 (1 - p@)p@) 7
1_ 21_ 2#
z|%mmﬁ%wf P )1~y l) | (5
(1 - pl@)p(w)) 7
and
@ > I(Cy =~ Cogywlla 2 sup(1 ~ EPI(Cy = Colgy) )

(1= [wP)(1 = lp@)P)Y’ @)|| @) = P(w)
1-p@u@) 7 1= p@)w)

2+a

1— 2)(1 — 2y =5t
= %(W)( [Pl )X llp(ﬂzp) ‘p(q)(w)ﬂl»(w)). (6)

(1 - p@)p(w))

Set D1 ={w e D : p(w) =0}, D, = {w € D : Y(w) = 0}. Multiplying (5) by p(p(w), Y (w)) and using (6), we
obtain

sup | Z,(w)|p(p(w), P(w)) < co. 7)

weD\Dy

Similarly we can obtain

sup [Zy(w)lp(p(w), Pp(w)) < eo. 8)

weD\D,
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From (5), we have

oo > [(Cp—Cy)fpwllez
(1~ [wP)(1 ~ lp@)P)g’ (@) (1~ k)1~ [p@)P)y’ (@)
(1= lp@)PR) 7 (1 - p@)(w) 7
1 - lp@)P)(1 = [P@)?) 7
> 1) - Zy(@) ~ 12wyt - LA ZWEOP
(1 - p@p@) 7
> |9,(w) - Dy(w)] - CAZy(w)lp(p(w), P(w)),
which with (8) implies

sup  |Zp(w) — Dy(w)| < oo.
weD\{D1UD,}

If Y(w) = 0 and @(w) # 0, set
pw) -z p

h@(w)(z) E— [ + JR—Y — 2rawp -t
pw)(1 - p(w)z) 7 Q+a+pep@w) (1-ew)z) 7

We get
o > |(Cp = Cyp)hpw)llz = sug(1 - |Z|2)|((C<{’ = Cy)hpw) )l
2+a+2p (p(w) — )y’ (w)

(1 - p@p@) 7
2+a+2p

\%

(1 = [wP)

2+a+2p N1
= ; (1 = [ (w)pw)| =

|2y (w)lp(p(w), P(w)),
which implies

sup | Zy(w)lp(p@w), Y(w)) < co.

weDy\Dy

From (9) and (11) we obtain

sup |Zp(w) — Zy(w)| < co.
weD,\D1

If Y(w) = 0 and @(w) # 0, similarly to the above proof we have
sup | Zp(w) = Zy(w)| < oo, sup |, (w)lp(p(w), pw)) < .

weD1\D, weD1\Ds

If p(w) = P(w) = 0, taking fy = z and using the boundedness of C,, — Cy, : A, - %, we obtain
sup |Zp(w) = Zyw) = sup (1-[wP)lg’w) -y’ @)l <I(Cp~Cy)follz < oo,

weD1NDy weD1NDy

sup |Zp(w)lp(p(w), P(w)) =0, sup |Zy(w)lp(p(w), Pw)) = 0.

weD1ND; weD1ND;

By (7),(13) and (15) we get
sup | Zp(2)lp(@(2), P(2)) < co.

zeD
By (10), (12), (13) and (14) we get
sup |Z,(z) — Zy(2)| < oo.
zeD

1938

(10)

(11)

(12)

(13)

(14)

(15)
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(i1) = (iii). Assume the conditions in (ii) hold. Then

sup |7y (2)Ip(¢(2), Y(2)) < sup|Zy(2)lp(p(2), P(2)) + sup |Zy(2) — Dy (2)lp(@(2), P(2)) < co.

zeD zeD zeD

Therefore (iii) holds.
(iii) = (i). Let f € AP with Ifll4» < 1. Using Lemmas 1 and 2 we have

sup(1 — 2P)((Cp — Cy)f) (2)] = sup (1 ~ 2P)f ()¢’ (2) = (1 = [2P) f (@(2))y 2)]

zeD zeD
= sup|7,@)(1 - @D T f(9@) - Zu@A - @R T WE)|

IA

sup |Z(2) = 2u(2)|1 - lp@P) 7 If (p@)
+sup 12,1 - 1@ T f0@) - A - @R 7 fwE)
< Csup |Zp(2) = y(2)| + Csup |Z4(2)|plp(@), ¥(2)) < o.

In addition, by Lemma 1 we have

fllL 1flL
((Cp = CHNO) < IF(@O)] + [fP(O)] < C fl —+C Al — < oo,
1-lpOR)T  (1-lpOPR)7

Hence C, — Cy : A}, > % is bounded. The proof of Theorem 1 is completed. O

To state the following theorem, we set
I(@) ={(zs) €D :lp(zn)l = 1}, T() = {(zs) € D : [¢(z4) = 1},

D(p) = {(zn) C D : lp(za)l = 1,1%p(zu)l + 0}, D) = {(zx) C D : [{P(zn)l = 1,|Zy(z0)| - 0}.

Theorem 2. Let ¢, 1 € S(D),0 < p < oo,a > —1. Suppose that C,, Cy, : A, > B is bounded and C,, Cy : A, > B
neither of them is compact. Then Cy, — Cy : Al — % is compact if and only if both (a) and (b) hold:

(a) D(p) = D) # 0, D(¢p) C I'(y).
(b) For z, € r((P) N r(l)b)r

Hm | (z0)lp(P(20), P(20)) = im0 | Dy (2a)lp(P(20), P(20)) = 1M |Dp(zn) = Dy (20)] = 0.

Proof. Necessity. First we assume that C,—Cy, : A}, > Zis compact. By the assumption thatC,, : A}, —» %
is not compact, from Lemma 3, there exists a sequence (z,,) C D(¢) with |¢(z,)| — 1 such that |Z,(z,)| - 0.
For a = ¢(z,), define f,, g, as in the proof of Theorem 1. We know that f,,g, € A, and converge to 0
uniformly on every compact subset of D as |w| — 1. From Lemma 4, we have

0« ICp=Cp)foenllz = (1= zuPN(Cp = Co)fen) )l
(1= 9P = )P 7

1D (zn)| = | Dy (zn) — Ty (16)
(I = @(zn)P(zn)) 7

\%

and
0« NCp—Cp)oellz = (1= zPI(Cp = Co)pen) @l
Do(zn) (A~ lp(zn)P)(1 = W) 7

Z f— 2rar2y p(@(zn), P(zn)), 17)
(1= @@zn)P(zn) 7
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as n — oo. Multiplying (16) by p(¢(z,), (z,)) and using (17), we get

,}g{;‘o |@(p(zn)|p(¢(zn)/ Y(zy)) = 0. (18)
Similarly to the above proof we have
lim |7y (za)lp(p(zn), 1(24)) = 0. (19)

Since [Zy(z,)| -+ 0, (18) implies that lim,, .. p(¢(z4), P(z4)) = 0. Hence, for any z, € D(¢p), lim,, e |(z,) —
Y(z,)| = 0. Therefore

D(p) c T(@). (20)

In addition, we have

|@(p(zn) - @¢(Zn)| - C|9¢(Zn)|p((P(Zn)/ P(zy)) < H(Cgu - Ctp)f(p(z,,)“@ -0
as n — oco. Hence by (19), we get

JI_IE}O |Dp(21) = Dy(za)l = 0. (21)

Hence, from (20) and (21), we have D(¢) C D(¢). Similarly to the above proof we can obtain that D(y) C
D(¢p). Therefore D(p) = D(¢).
For any sequence {z,} such that |p(z,)| = 1, [{(z,)| — 1 and |Z,(z,)| — 0, we have

lim | () p(p(20), (24)) = 0. (22)
In addition,

0 l(Cp = Cp)fpnllz = (1 = za)(Cp = Cy) fyz) ()
= |Dp(zn) = Zy(zn)l = C1 Dy (zn)lp(@(2n), Y(2n)) (23)

as n — oo. We obtain limy, e |Zy(z1) — Zy(z4)] = 0 and hence lim; o [Zy(z0)] = im0 [Zy(20)] = 0.
Therefore lim; o [Zy (zn)|p(9(21), P(z4)) = 0.

Sufficiency. Now we assume that (2) and (b) hold. From the assumption and Theorem 3.1 of [11], we
have

sup |Z,(z)| < 00, sup|Zy(z)| < co. (24)
zeD zeD
Let {f,} be a sequence in AZ such that || £, || ar < 1 and converges to 0 uniformly on every compact subset of D.

To prove that C, — Cy : A, — % is compact, by Lemma 4, we need to prove |[(Cy, — Cy)fullz = 0 as n — oo.
Suppose not, since f,,(¢(0)), f.(¢(0)) — 0asn — oo, we may assume that for some ¢ > 0, ||[(Cy, — Cy) fullz > €
for all n. Then there exists a sequence z,, € D such that

|Zp(za)(1 = lp(z0)? (@(zn)) = Dy(za)(1 = @) ) > €. (25)

for every n. This 1mphes that max{|@(z,)|, [ (z,)l} — 1, as n — oo by the facts (24) and {f,} also converges
to 0 uniformly on every compact subset of D. Assume that |p(z,)| — 1 and (z,) — w, for some complex
number w. If [w| < 1, then z,, ¢ I'(p) NT'(y). Since D(p) C I'(), we have |Z,(z,)| — 0. On the other hand, by

the boundedness of Cy: AZ — X weget € %,ie., wehave

|2y @I(1 ~ (2 )T =~ |zl )Y (z0)| < 0.

Moreover, |w| < 1 yields f;((z,)) — 0. This contradicts (25). We obtain |w| = 1. Therefore |¢(z,)| — 1 and
[{(z4)] = 1. From the assumption we obtain that

1D (20)(1 = |(21) (@(zn)) = Zy(za)( = [P (za)]7)
< |Dp(2n) - %(Zn)l + CI%(Zn)IP((P(Zn), P(zn)) = 0,

(W (zn))]
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as n — oo. This also contradicts (25). The proof of this theorem is finished. O
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