

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

(m, n)-Jordan Derivations

Asia Majeeda, Cenap Ozelb

 a University of Manitoba, Department of Mathematics, Winnipeg Canada b Dokuz Eylul University, Department of Mathematics, Buca/Izmir 35160 Turkey

Abstract. A subspace lattice \mathcal{L} on H is called *commutative subspace lattice* if all projections in \mathcal{L} commute pairwise. It is denoted by *CSL*. If \mathcal{L} is a *CSL*, then $alg\mathcal{L}$ is called a *CSL* algebra. Under the assumption $m+n\neq 0$ where m,n are fixed integers, if δ is a mapping from \mathcal{L} into itself satisfying the condition $(m+n)\delta(A^2)=2m\delta(A)A+2nA\delta(A)$ for all $A\in\mathcal{A}$, we call δ an (m,n) *Jordan derivation*. We show that if δ is a norm continuous linear (m,n) mapping from \mathcal{A} into it self then δ is a (m,n)-Jordan derivation.

1. Introduction.

Definition 1.1. Let X be a ring (or an algebra) with the unit I. An additive (or linear) map δ from X into it self is called a derivation if $\delta(AB) = \delta(A)B + A\delta(B)$ for all $A, B \in X$.

Definition 1.2. An additive (or linear) map δ from a ring (or an algebra) X into itself is called a Jordan derivation if $\delta(AB + BA) = \delta(A)B + A\delta(B) + \delta(B)A + B\delta(A)$ for all $A, B \in X$.

Definition 1.3. Let H be a separable complex Hilbert space and let B(H) be the set of all bounded linear maps from H into itself. By a subspace lattice on H, we mean a collection \mathcal{L} of subspaces of H with 0 and H in \mathcal{L} such that every family $\{M_r\}$ of elements of \mathcal{L} , both $\cap M_r$ and $\vee M_r$ belonging to \mathcal{L} . For a subspace lattice \mathcal{L} of H, alg \mathcal{L} denotes the algebra of all operators on H that leave members of \mathcal{L} invariant. It is also disregard the distinction between a subspace and the orthogonal projection onto it. A Hilbert space subspace lattice \mathcal{L} is called a commutative subspace lattice if it consists of mutually commuting projections. If \mathcal{L} is a commutative subspace lattice then alg \mathcal{L} is called a CSL-algebra.

In [2], Vukman defined a new type of Jordan derivation, named (m,n)-Jordan derivation as follows: let $m \ge 1, n \ge 1$ be some fixed integers with $m \ne n$, and let \mathcal{A} be an algebra. Suppose there exists a nonzero additive mapping $\delta : \mathcal{A} \to \mathcal{A}$ satisfying the relation $(m+n)\delta(x^2) = 2m\delta(x)x + 2nx\delta(x)$ for all $x \in \mathcal{A}$ is called (m,n)-Jordan derivation.

2. (m, n)-Jordan Derivations on CSL-Algebras.

In this paper we will study (m,n)-Jordan derivation on *CSL*-algebras. Assume that $m+n \neq 0$. We proceed with the following lemmata.

2010 Mathematics Subject Classification. Primary 47L35; Secondary 16W25

Keywords. Commutative subspace lattice, Jordan derivations, (m,n)-Jordan derivations, CSL algebra

Received: 10 August 2013; Accepted: 03 February 2014

Communicated by Dragan S. Djordjević

Email addresses: a.majeed80@hotmail.co.uk (Asia Majeed), cenap.ozel@gmail.com (Cenap Ozel)

Lemma 2.1. Let \mathcal{A} be a unital algebra. If δ is an (m, n)-Jordan derivation from \mathcal{A} into it self, then for each idempotent $P \in \mathcal{A}$, $(m + n)\delta(P) = 2m\delta(P)P + 2nP\delta(P)$.

Proof. It is obvious from I = I.I that $(m+n)\delta(I) = (m+n)\delta(I.I) = 2m\delta(I)I + 2nI\delta(I) = 2m\delta(I) + 2n\delta(I) = 2(m+n)\delta(I)$. Thus $(m+n)\delta(I) = 0$. Since we know that $m+n \neq 0$, therefore we have $\delta(I) = 0$. For any idempotent $P \in \mathcal{A}$, P(I-P) = 0. Then we have

$$(m+n)\delta(P(I-P) + (I-P)P) = 2m\delta(P)(I-P) + 2m\delta(I-P)P + 2nP\delta(I-P) + 2n(I-P)\delta(P)$$
$$= 2m\delta(P) + 2n\delta(P) - 4m\delta(P)P - 4nP\delta(P)$$
$$\Rightarrow (m+n)\delta(P) = 2m\delta(P)P + 2nP\delta(P).$$

Lemma 2.2. Let \mathcal{A} and δ be as in Lemma 2.1. Then for each idempotent $P \in \mathcal{A}$ and every element $A \in \mathcal{A}$, we have $(i)(m+n)\delta(PA+AP)=2m\delta(P)A+2m\delta(A)P+2nP\delta(A)+2nA\delta(P)$ $(ii)(m+n)\delta(PAP)=m\delta(P)PA+m\delta(P)AP+mP\delta(A)P+mA\delta(P)P-m\delta(P)A+nP\delta(P)A+nP\delta(A)P+2nPA\delta(P)+nAP\delta(P)-nA\delta(P)$.

Proof. (i) For any idempotent $P \in \mathcal{A}$, P(I-P)PA = (I-P)PA = 0. Thus we have

$$(m+n)\delta(P(I-P)A + (I-P)AP) = 2m\delta((I-P)A)P + 2m\delta(P)(I-P)A + 2n(I-P)A\delta(A) + 2nP\delta((I-P)A) = 2m\delta(A)P - 2m\delta(PA)P + 2m\delta(P)A - 2m\delta(P)A + 2nA\delta(P) - 2nPA\delta(P) + 2nP\delta(A) - 2nP\delta(PA),$$
 (1)

and

$$(m+n)\delta((I-P)PA + PA(I-P)) = 2m\delta(I-P)PA + 2m\delta(PA)(I-P) + 2n(I-P)\delta(PA) + 2n(PA)\delta(I-P) = 2m\delta(A)P - 2m\delta(PA)P + 2m\delta(PA) - 2m\delta(PA) - 2m\delta(PA)P + 2nA\delta(P) - 2nPA\delta(P) + 2nP\delta(A) - 2nP\delta(PA).$$
 (2)

Combining the equations above then they give

$$2m\delta(PA) + 2n\delta(PA) = 2m\delta(A)P + 2m\delta(P)A + 2nA\delta(P) + 2nP\delta(A). \tag{3}$$

Since AP(I-P)=A(I-P)P=0, with the similar proof of above equations above.

$$2m\delta(AP) + 2n\delta(AP) = 2m\delta(A)P + 2m\delta(P)A + 2nA\delta(P) + 2nP\delta(A) \tag{4}$$

Combining (3) and (4) we have

$$(m+n)\delta(AP+PA)=2m\delta(A)P+2m\delta(P)A+2nA\delta(P)+2nP\delta(A).$$

Replacing A by PA + AP in (i), we have

$$(m+n)\delta(P(PA+AP)+(PA+AP)P)$$

$$=2m\delta(P)(PA+AP)+2m\delta(PA+AP)P+2nP\delta(PA+AP)+2n(PA+AP)\delta(P)$$

$$\Rightarrow (m+n)\delta(PA+AP) + 2(m+n)\delta(PAP)$$

$$= 2m\delta(P)(PA+AP) + 2m\delta(PA+AP)P + 2nP\delta(PA+AP) + 2n(PA+AP)\delta(P).$$

Then it implies

$$\begin{split} &2m\delta(P)A + 2m\delta(A)P + 2nP\delta(A) + 2nA\delta(P) + 2(m+n)\delta(PAP) \\ &= 2m\delta(P)(PA + AP) + 2m(\delta(P)A + P\delta(A) + \delta(A)P + A\delta(P)P) + 2nP(\delta(P)A \\ &+ P\delta(A) + \delta(A)P + A\delta(P)) + 2n(PA + AP)\delta(P) \\ &= 2m\delta(P)(PA + AP) + 2m\delta(P)AP + 2mP\delta(A)P + 2m\delta(A)P + 2mA\delta(P)P \\ &+ 2nP\delta(P)A + 2nP\delta(A) + 2nP\delta(A)P + 2nPA\delta(P) + 2nPA\delta(P) + 2nAP\delta(P) \\ &\Rightarrow 2m\delta(P)A + 2nA\delta(P) + 2(m+n)\delta(PAP) \\ &= 2m\delta(P)PA + 4m\delta(P)AP + 2mP\delta(A)P + 2mA\delta(P)P + 2nP\delta(A)P + 2nP\delta(A)P + 4nPA\delta(P) + 2nAP\delta(P). \end{split}$$

Hence we have

$$(m+n)\delta(PAP) = m\delta(P)PA + m\delta(P)AP + mP\delta(A)P + mA\delta(P)P - m\delta(P)A + nP\delta(P)A + nP\delta(A)P + 2nPA\delta(P) + nAP\delta(P) - nA\delta(P)$$

which is the proof of (ii). \Box

Corollary 2.3. Let \mathcal{A} and δ be as in Lemma 2.1. Suppose that \mathcal{B} is the subalgebra of \mathcal{A} generated by all idempotents in \mathcal{A} . Then for any $T \in \mathcal{B}$ and any $A \in \mathcal{A}$, we have $(m+n)\delta(TA+AT) = 2m\delta(A)T+2m\delta(T)A+2nA\delta(T)+2nT\delta(A)$.

Lemma 2.4. Let \mathcal{L} be a CSL on H. If δ is a (m, n)-Jordan derivation from alg \mathcal{L} into itself, then for all $S, T \in alg \mathcal{L}$ and $P \in \mathcal{L}$, we have

$$(i)(m+n)\delta(SPT(I-P)) = 2m\delta(S)(PT(I-P)) + 2nS\delta(PT(I-P))$$

$$(ii)(m+n)\delta(PS(I-P)T) = 2m\delta(PS(I-P))T + PS(I-P)\delta(T).$$

Proof. (i)Let *P* be in \mathcal{L} . Since $(m+n)\delta(P)=2m\delta(P)P+2nP\delta(P)$, we see that $P\delta(P)P=(I-P)\delta(P)(I-P)=0$. So $\delta(P)=P\delta(P)(I-P)$. Thus by Lemma 2.2, for every $T\in alg\mathcal{L}$,

$$(m+n)\delta(PT(I-P)) = (m+n)\delta(PPT(I-P) + PT(I-P)P)$$

$$= 2m\delta(P)(PT(I-P) + 2m\delta(PT(I-P))P + 2nP\delta(PT(I-P)) + 2nPT(I-P)\delta(P)$$

$$= 2m\delta(PT(I-P)P) + 2nP\delta(PT(I-P)).$$

This implies $\delta(PT(I-P)) = P\delta(PT(I-P))(I-P)$ for every $T \in alg\mathcal{L}$. By Lemma 2.2 (ii), we have $(I-P)\delta(PTP) = \delta((I-P)T(I-P)P) = 0$ for every $T \in alg\mathcal{L}$. Since PT(I-P) = P - (P-PT(I-P)) and PT(I-P) is an idempotent, by Corollary 2.3, for $S, T \in alg\mathcal{L}$,

```
\begin{split} (m+n)\delta(SPT(I-P) &= (m+n)(\delta(PSPPT(I-P) + PT(I-P)PSP)) \\ &= 2m\delta(PSP)(PT(I-P)) + 2m\delta(PT(I-P))PSP \\ &+ 2nPSP\delta(PT(I-P)) + 2nPT(I-P)\delta(PSP) \\ &= 2m\delta(PSP)(PT(I-P)) + 2nPSP\delta(PT(I-P)) \\ &= 2m\delta(S)(PT(I-P)) + 2nS\delta(PT(I-P)). \end{split}
```

With proof (i), the proof of (ii) is also true. \Box

By the lemmata above and the fact that a *CSL*-algebra contains all idempotent elements then we have the following result.

Theorem 2.5. Let \mathcal{L} be a CSL-algebra on \mathcal{H} . If δ is a norm continuous linear (m,n) mapping from \mathcal{H} into it self then δ is a (m,n)-Jordan derivation.

References

- [1] F.Lu, The Jordan stucture of CSL algebras, Studia Math. 190 (2009), 283–299.
- [2] J.Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstratio Math. 41(2008), 773–778.