
Filomat 28:9 (2014), 1827–1833
DOI 10.2298/FIL1409827S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Zero-Term Rank Inequalities and their Extreme Preservers
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Abstract. The zero-term rank of a matrix A over a semiringS is the least number of lines (rows or columns)
needed to include all the zero entries in A. In this paper, we characterize linear operators that preserve the
sets of matrix ordered pairs which satisfy extremal properties with respect to zero-term rank inequalities of
matrices over nonbinary Boolean algebras.

1. Introduction

Linear preserver problems concern the characterization of linear operators on matrix spaces that leave
certain functions, subsets, relations, etc., invariant([9]). In 1897, Frobenius characterized the linear operators
that preserve determinant of matrices over real field, which was the first results on linear preserver problems.
After his result, many researchers have studied the linear operators that preserve some matrix functions,
say, rank and permanent of matrices and so on([9]).

Beasley and Guterman([1]) investigated rank inequalities of matrices over semirings. And they charac-
terized the equality cases for some inequalities in [2]. These characterization problems are open even over
fields( see [3]). The structure of matrix varieties which arise as extremal cases in these inequalities is far
from being understood over fields, as well as over semirings. A usual way to generate elements of such a
variety is to find a pair of matrices which belongs to it and to act on this pair by various linear operators
that preserve this variety. The complete classification of linear operators that preserve equality cases in
matrix rank inequalities over fields was obtained in [4]. For details on linear operators preserving matrix
invariants one can see [9]. Almost all research on linear preserver problems over semirings have dealt with
those semirings without zero-divisors to avoid the difficulties of multiplication arithmetic for the elements
in those semirings([2]-[7]). But nonbinary Boolean algebra is not the case. That is, all elements except 0
and 1 in most nonbinary Boolean algebras are zero-divisors. So there are few results on the linear preserver
problems for the matrices over nonbinary Boolean algebra([8], [10]). Kirkland and Pullman characterized
the linear operators that preserve rank of matrices over nonbinary Boolean algebra in [8].

In this paper, we characterize the linear operators that preserve the sets of matrix pairs over nonbinary
Boolean algebra which satisfy the extreme cases for certain zero-term rank inequalities. For this purpose,
we also study the inequalities of zero-term rank for the sum or multiplication of matrices over nonbinary
Boolean algebra. We also construct the sets of matrix pairs that satisfy the equalities for those zero-term
rank inequalities.
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2. Preliminaries and Basic Results

A semiring S consists of a set Swith two binary operations, addition and multiplication, such that:

· S is an Abelian monoid under addition (the identity is denoted by 0);

· S is a monoid under multiplication (the identity is denoted by 1, 1 , 0);

· multiplication is distributive over addition on both sides;

· s0 = 0s = 0 for all s ∈ S.

A semiring S is called antinegative if the zero element is the only element with an additive inverse.

A semiring S is called a Boolean algebra if S is equivalent to a set of subsets of a given set Y, the sum of
two subsets is their union, and the product is their intersection. The zero element is the empty set and the
identity element is the whole setY.

Let Sk = {a1, a2, · · · , ak} be a set of k-elements, P(Sk) be the set of all subsets of Sk and Bk be a Boolean
algebra of subsets of Sk = {a1, a2, · · · , ak}, which is a subset ofP(Sk). It is straightforward to see that a Boolean
algebra Bk is a commutative and antinegative semiring. If Bk consists of only the empty subset and Sk then
it is called a binary Boolean algebra. If Bk is not binary Boolean algebra then it is called a nonbinary Boolean
algebra. LetMm,n(Bk) denote the set of m × n matrices with entries from the Boolean algebra Bk. If m = n,
we use the notationMn(Bk) instead ofMn,n(Bk).

Throughout the paper, we assume that m ≤ n and Bk denotes a nonbinary Boolean algebra, which
contains at least 3 elements. The matrix In is the n × n identity matrix, Jm,n is the m × n matrix of all
ones and Om,n is the m × n zero matrix. We omit the subscripts when the order is obvious from the
context and we write I, J and O, respectively. The matrix Ei, j, which is called a cell, denotes the matrix
with exactly one nonzero entry, that being a one in the (i, j)th entry. Let Ri denote the matrix whose ith row
is all ones and is zero elsewhere, and C j denote the matrix whose jth column is all ones and is zero elsewhere.

LetBk be a nonbinary Boolean algebra. An operator T :Mm,n(Bk)→Mm,n(Bk) is called linear if it satisfies
T(X + Y) = T(X) + T(Y) and T(αX) = αT(X) for all X,Y ∈Mm,n(Bk) and α ∈ Bk.

A line of a matrix A is a row or a column of the matrix A.
The matrix A ∈Mm,n(Bk) is said to be of zero-term rank k (z(A) = k) if the least number of lines needed to

include all zero elements of A is equal to k.
The matrix D ∈ Mm,n(Bk) is said to be of term rank h (t(D) = h) if the least number of lines needed to

include all nonzero elements of D is equal to h.
Let us denote by c(D) the least number of columns needed to include all nonzero elements of A and by

r(D) the least number of rows needed to include all nonzero elements of A.
The matrix A ∈Mm,n(Bk) is said to be of Boolean rank r if there exist matrices B ∈Mm,r(Bk) and C ∈Mr,n(Bk)

such that A = BC and r is the smallest positive integer that such a factorization exists. We denote b(A) = r.
By definition, the unique matrix with Boolean rank equal to 0 is the zero matrix O.

Arithmetic properties of zero-term rank of Boolean matrices are restricted by the following list of
inequalities established in [1]:

1. z(A + B) ≥ 0;
2. z(A + B) ≤ min{z(A), z(B)};
3. z(AB) ≥ 0;
4. z(AB) ≤ z(A) + z(B).
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Below, we use the following notations in order to denote sets of Boolean matrices that arise as extremal
cases in the inequalities listed above:

Zsn(Bk) = {(X,Y) ∈Mm,n(Bk)2
|z(X + Y) = min{z(X), z(Y)}};

Zsz(Bk) = {(X,Y) ∈Mm,n(Bk)2
|z(X + Y) = 0};

Zmz(Bk) = {(X,Y) ∈Mn(Bk)2
|z(XY) = 0};

Zms(Bk) = {(X,Y) ∈Mn(Bk)2
|z(XY) = z(X) + z(Y)}.

We say an operator, T, preserves a set P if X ∈ P implies that T(X) ∈ P, or, if P is a set of ordered pairs,
provided that (X,Y) ∈ P implies (T(X),T(Y)) ∈ P.

An operator T strongly preserves the setP if X ∈ P if and only if T(X) ∈ P, or, ifP is a set of ordered pairs,
provided that (X,Y) ∈ P if and only if (T(X),T(Y)) ∈ P.

The matrix X ◦ Y denotes the Hadamard or Schur product, i.e., the (i, j) entry of X ◦ Y is xi, jyi, j.
An operator T is called a (P,Q,B)-operator if there exist permutation matrices P and Q, and a matrix B

with no zero entries, such that
T(X) = P(X ◦ B)Q (2.1)

for all X ∈Mm,n(S), or, if m = n,
T(X) = P(X ◦ B)tQ (2.2)

for all X ∈Mm,n(S), where Xt denotes the transpose of X. Operator of the form (2.1) is called non-transposing
(P,Q,B)-operator; operators of the form (2.2) is called transposing (P,Q,B)-operator. A (P,Q,B)-operator is
called a (P,Q)-operator if B = J, the matrix of all ones.

It was shown in [4] that linear preservers for extremal cases of classical matrix rank inequalities over
fields were characterized. On the other hand, linear preservers for various rank functions over semirings
have been the object of much study during the last 30 years, see for example [2]-[9]. In particular zero-
term rank was investigated in the last years, see for example [5–7]. The aim of the present paper is to
classify linear operators that preserve pairs of matrices that attain extreme cases in the above zero-term
rank inequalities 1 ∼ 4.

We say that the matrix A dominates the matrix B if and only if bi, j , 0 implies that ai, j , 0, and we write
A ≥ B or B ≤ A.

We begin with some basic results.

Theorem 2.1. Let T :Mm,n(Bk)→Mm,n(Bk) be a linear operator. Then the following conditions are equivalent:
(a) T is bijective;
(b) T is surjective;
(c) T is injective;
(d) there exists a permutation σ on {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . ,n} such that T(Ei, j) = Eσ(i, j) for all 1 ≤ i ≤

m and 1 ≤ j ≤ n.

Proof. (a), (b) and (c) are equivalent sinceMm,n(Bk) is a finite set.
(d)⇒(b) For any D ∈Mn(Bk), we may write

D =

m∑
i=1

n∑
j=1

di, jEi, j.
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Since σ is a permutation, there exist σ−1(i, j) and

D′ =

m∑
i=1

n∑
j=1

dσ−1(i, j)Eσ−1(i, j)

such that

T(D′) = T

 m∑
i=1

n∑
j=1

dσ−1(i, j)Eσ−1(i, j)

 =

m∑
i=1

n∑
j=1

dσσ−1(i, j)Eσσ−1(i, j)

=

m∑
i=1

n∑
j=1

di, jEi, j = D.

(a)⇒(d) We assume that T is bijective. Suppose that T(Ei, j) , Eσ(i, j) where σ be a permutation on
{(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . ,n}. Then there exist some pairs (i, j) and (r, s) such that T(Ei, j) = αEr,s (α , 1)
or some pairs (i, j), (r, s) and (u, v) ((r, s) , (u, v)) such that T(Ei, j) = αEr,s+βEu,v+Z (α , 0, β , 0, Z ∈Mm,n(Bk)),
where the (r, s)th and (u, v)th entries of Z are zeros.

Case 1) Suppose that there exist some pairs (i, j) and (r, s) such that T(Ei, j) = αEr,s (α , 1). Since
T is bijective, there exist Xr,s ∈ Mm,n(Bk) such that T(Xr,s) = Er,s. Then αT(Xr,s) = αEr,s = T(Ei, j), and
T(αXr,s) = T(Ei, j). Hence αXr,s = Ei, j, which contradicts the fact that α , 1.

Case 2) Suppose that there exist some pairs (i, j), (r, s) and (u, v) such that T(Ei, j) = αEr,s + βEu,v + Z (α ,
0, β , 0, Z ∈ Mm,n(Bk)), where the (r, s)th and (u, v)th entries of Z are zeros. Since T is bijective,
there exist Xr,s, Xu,v and Z′ ∈ Mm,n(Bk) such that T(Xr,s) = αEr,s, T(Xu,v) = βEu,v, and T(Z′) = Z. Thus
T(Ei, j) = αEr,s + βEu,v + Z = T(Xr,s) + T(Xu,v) + T(Z′) = T(Xr,s + Xu,v + Z′). So Ei, j = Xr,s + Xu,v + Z′, a contra-
diction.

One can easily verify that if m = 1 or n = 1, then all operators under consideration are (P,Q,B)-operators
and if m = n = 1, then all operators under consideration are (P,PT,B)-operators.

Henceforth we will always assume that m,n ≥ 2.

Lemma 2.2. Let T : Mm,n(Bk) → Mm,n(Bk) be a linear operator which maps lines to lines and let T be defined
by the rule T(Ei, j) = Eσ(i, j), where σ is a permutation on the set {(i, j)|i = 1, 2, . . . ,m; j = 1, 2, . . . ,n}. Then T is a
(P,Q)-operator.

Proof. Since no combination of p rows and q columns can dominate J for any nonzero p and q with p + q = m,
we have that either the image of each row is a row and the image of each column is a column, or m = n and
the image of each row is a column and image of each column is a row. Thus there are permutation matrices
P and Q such that T(Ri) ≤ PRiQ, T(C j) ≤ PC jQ or, if m = n, T(Ri) ≤ P(Ri)TQ, T(C j) ≤ P(C j)TQ. Since each
nonzero entry of a cell lies in the intersection of a row and a column and T maps cells to cells, it follows
that T(Ei, j) = PEi, jQ, or, if m = n, T(Ei, j) = P(Ei, j)TQ.

Example 2.3. Consider the linear operator T :M3,3(B3)→M3,3(B3) defined by T(X) = X ◦ B for all X ∈M3,3(B3)
with B3 = P({a, b, c}). For some B, such that z(B) = 0 and b(B) = 1, we show that T does not preserves the zero-term
rank if B , J.

For, let X =

 {a, b} {a, b, c} {a, b}{a, c} {a, c} {a, b}
{a} {b, c} {a, b}

 and B =

 {a} {b} {c}{a} {b} {c}
{a} {b} {c}

. Then t(X) = 3, but

T(X) = X ◦ B =

 {a} {b} 0
{a} 0 0
{a} {b} 0

 .
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That is, z(T(X)) = z(X ◦ B) = 2 , 0 = z(X). Thus z(X) = 0, but T does not preserves the zero-term rank since there
are nonzero entries of B which are zero-divisors.

3. Extremes Preservers of Zero-Term Rank over Nonbinary Boolean Algebras

In this section, we characterize the linear operators that preserve the extreme set of matrix pairs, which
are derived from the inequalities of the zero-term ranks of matrices over nonbinary Boolean algebra.

We begin with a Lemma.

Lemma 3.1. Let Bk be a nonbinary Boolean algebra, and T : Mm,n(Bk) → Mm,n(Bk) be a (P,Q)-operator. Then T
preserves all zero-term ranks.

Proof. Assume that T is a (P,Q)-operator. For any X ∈Mm,n(Bk), we have

z(T(X)) = z(PXQ) = z(X)

or if m=n,
z(T(X)) = z(PXtQ) = z(Xt) = z(X).

Hence any (P,Q)-operator preserves all zero-term ranks.

Theorem 3.2. Let Bk be a nonbinary Boolean algebra, and T : Mm,n(Bk) → Mm,n(Bk) be a surjective linear map.
Then T preserves the set Zsn(Bk) if and only if T is a (P,Q)-operator where P and Q are permutation matrices of
appropriate sizes.

Proof. Since T is a linear surjective map, by Theorem 2.1 we have that T(Ei, j) = Eσ(i, j) for all i, j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, where σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of two cells are not in the same
line, but the cells are, say Ei, j,Ei,k are the cells such that T(Ei, j),T(Ei,k) are not in the same line. Then
one has that z((J − Ei, j − Ei,k) + Ei,k) = 1 = z(J − Ei, j − Ei,k), i.e. (J − Ei, j − Ei,k,Ei,k) ∈ Zsn(Bk), as far as
z(T(J − Ei, j − Ei,k) + T(Ei,k)) = 1 < 2 = min{z(T(J − Ei, j − Ei,k)), z(T(Ei,k)}, i.e. (T(J − Ei, j − Ei,k),T(Ei,k)) < Zsn(Bk),
a contradiction. Thus T maps lines to lines.

By Lemma 2.2 it follows that T is a (P,Q)-operator where P and Q are permutation matrices of appropriate
sizes.

Conversely, assume that T is a (P,Q)-operator. Then T preserves all zero-term ranks by Lemma 3.1.
Therefore for any (X,Y) ∈ Zsn(Bk), we have z(X + Y) = min{z(X), z(Y)}. Thus z(T(X) + T(Y)) = z(T(X + Y)) =
z(X + Y) = min{z(X), z(Y)} = min{z(T(X), z(T(Y)}. Hence (P,Q)-operator preserves the set Zsn(Bk).

Theorem 3.3. Let Bk be a nonbinary Boolean algebra, and T : Mm,n(Bk) → Mm,n(Bk) be a linear map. Then T
preserves the set Zsz(Bk) if and only if T is a permutation on the set of all cells.

Proof. Assume that T is a permutation on the set of all cells. That is, T(Ei, j) = Eσ(i, j) for all i, j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, where σ is a permutation on the set of pairs (i, j).

Consider (A,B) ∈ Zsz(Bk). Then z(A + B) = 0. From antinegativity it follows that sets of zero cells in A
and B are disjoint. Thus the same holds for T(A) and T(B) since σ is a permutation. Hence in (T(A) + T(B))
there is no zero entry, and hence, (T(A) + T(B)) ∈ Zsz(Bk). Thus, such a linear operator T preserves the set
Zsz(Bk).

Conversely, assume that T preserves the set Zsz(Bk). If T is not a permutation on the set of all cells, then
there are two distinct cells Ei, j,Eh,k such that T(Ei, j) = T(Eh,k) = Ep,q. Then z(J) = 0 but z(T(J)) ≥ 1, and hence
(J, 0) ∈ Zsz(Bk) but (T(J),T(0)) < Zsz(Bk), a contradiction.

Theorem 3.4. Let Bk be a nonbinary Boolean algebra, and T :Mn(Bk)→Mn(Bk) be a linear surjective map. Then
T preserves the set Zmz(Bk) if and only if T is a nontransposing (P,Pt)-operator, where P is a permutation matrix.
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Proof. By Lemma 3.1, nontransposing (P,Pt)-operators preserve all the zero-term ranks. Let (X,Y) ∈ Zmz(Bk).
Then z(XY) = 0 and hence XY has no zero entries. Since T is a nontransposing (P,Pt)-operator, one has
T(X)T(Y) = PXPtPYPt = PXYPt, which has no zero entries. Thus (T(X),T(Y)) ∈ Zmz(Bk). Hence T preserves
the set Zmz(Bk).

Conversely, assume that T preserves the set Zmz(Bk). Since T is a linear surjective map, by Theorem 2.1
we have that T(Ei, j) = Eσ(i, j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of two cells are in the same line,
but the cells are not, say Ei, j,Ei,k are the cells such that T−1(Ei, j),T−1(Ei,k) are not in the same line. Let us
consider A = T−1(J \ Ri). Thus there are no zero rows of A since T is a permutation on the set of cells and
not all elements of i’th row lie in one row by the choice of i. Hence AJ does not have zero elements by
the antinegativity and z(AJ) = 0. Thus (A, J) ∈ Zmz(Bk) as far as (T(A),T(J)) = (J \ Ri,T(J)) < Zmz(Bk), a
contradiction. Thus T−1 maps lines to lines. Hence T maps lines to lines.

By Lemma 2.2 it follows that T is a (P,Q)-operator where P and Q are permutation matrices of appropriate
sizes.

In order to prove that transposition operator does not preserve Zmz(Bk) it suffices to take the pair (C1,R1).
That is, (C1,R1) ∈ Zmz(Bk) but (Ct

1,R
t
1) = (R1,C1) < Zmz(Bk).

Now, let us show that Q = Pt. Assume in the contrary that QP , I. Thus there exists indexes i, j such
that QP transforms i’th column into j’th column. In this case we take matrices A = J \ (E1,1 + . . .+ E1,n) + E1,i,
B = J \ E j,n. Thus AB has no zero elements, i.e., z(AB) = 0. However, the (1, 1)’th element of QT(A)T(B)P
is zero, i.e., z(T(A)T(B)) , 0. This contradiction concludes that Q = Pt. Thus T is a nontransposing
(P,Pt)-operator.

Theorem 3.5. Let Bk be a nonbinary Boolean algebra, and T :Mn(Bk)→Mn(Bk) be a linear surjective map. Then
T preserves the set Zms(Bk) if and only if T is a nontransposing (P,Pt)-operator, where P is a permutation matrix of
order n.

Proof. By Lemma 3.1, nontransposing (P,Pt)-operators preserve all the zero-term ranks. Let (X,Y) ∈ Zms(Bk).
Then z(XY) = z(X+Y). Since T is a nontransposing (P,Pt)-operator, one has T(X)T(Y) = PXPtPYPt = PXYPt,
which has the same zero-term rank as z(XY). And z(T(X)+T(Y)) = z(T(X+Y)) = z(X+Y).Thus (T(X),T(Y)) ∈
Zms(Bk). Hence T preserves the set Zms(Bk).

Conversely, assume that T preserves the set Zms(Bk). Since T is a linear surjective map, by Theorem 2.1
we have that T(Ei, j) = Eσ(i, j) for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of two cells are not in the same line, but
the cells are, say Ei, j,Ei,k are the cells such that T(Ei, j),T(Ei,k) are not in the same line. Note that

z((J \ Ri)J) = z(J \ Ri) = 1 = 1 + 0 = z(J \ Ri) + z(J).

Thus (J \ Ri, J) ∈ Zms(Bk). On the other hand, T(J) = J and T(J \ Ri) has at least two lines containing zero
entries, so one has z(T(J \ Ri)) + z(T(J)) ≥ 2. But T(J \ Ri) has no rows containing only zero entries and
T(J) = J, so one has z(T(J \ Ri)T(J)) = z(J) = 0. Hence (T(J \ Ri),T(J)) < Zms(Bk). This contradiction shows
that T maps lines to lines.

By Lemma 2.2 it follows that T is a (P,Q)-operator where P and Q are permutation matrices of appropriate
sizes.

In order to prove that transposition operator does not preserve Zms(Bk) it suffices to take the pair of
matrices X = J \ R1, Y = J \ C1 since (X,Y) ∈ Zms(Bk) but (Xt,Yt) < Zms(Bk).

Now, let us show that Q = Pt. Assume in the contrary that QP , I. Thus there exists indexes i, j such that
QP transforms i’th column into j’th column. In this case we take matrices A = J \ Ci, B = Ri. Thus AB = 0
and hence z(AB) = n. And z(A) + Z(B) = n. Therefore (A,B) ∈ Zms(Bk). However, T(A)T(B) = PAQPBQ =
P(J \ C j)RiQ = PJQ = J has zero-term rank 0 while z(T(A)) + z(T(B)) = z(PAQ) + z(PBQ) = z(A) + z(B) = n.
Therefore (T(A),T(B)) < Zms(Bk). This contradiction concludes that Q = Pt. Thus T is a nontransposing
(P,Pt)-operator.
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As a concluding remark, we have characterized the linear operators that preserve the extreme sets of
matrix ordered pairs over nonbinary Boolean algebra which come from certain zero-term rank inequalities
over nonbinary Boolean algebra.
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