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Abstract. In this paper we study several equivalent conditions for the reverse order law (ab)† = b†(a†abb†)†a†

in rings with involution. We extend some well-known results to more general settings.

1. Introduction

Let R be an associative ring with the unit 1. If a, b ∈ R are invertible, then ab is invertible too and the

inverse of the product ab satisfied the reverse order law (ab)−1 = b−1a−1. This formula cannot trivially be

extended to the Moore–Penrose inverse of the product ab. Many authors studied this problem and proved

some equivalent conditions for (ab)† = b†a† in setting of matrices, operators or rings [1–6, 8, 9, 11, 12, 15, 20–

22]. Because the reverse order law (ab)† = b†a† does not always holds, it is not easy to simplify various

expressions that involve the Moore-Penrose inverse of product. In addition to (ab)† = b†a†, (ab)† may be

expressed as (ab)† = b†(a†abb†)†a†, (ab)† = b∗(a∗abb∗)†a∗, (ab)† = b†a† − b†[(1 − bb†)(1 − a†a)]†a† etc. These

equalities are called mixed-type reverse order laws for the Moore-Penrose inverse of a product. When

investigating various reverse order laws for (ab)†, we notice that some of them are in fact equivalent (see

[15, 19, 20]). In this paper we investigate necessary and sufficient conditions for the reverse order law

(ab)† = b†(a†abb†)†a† in the setting of rings with involution.

An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R is self-adjoint if a∗ = a.

The Moore–Penrose inverse (or MP-inverse) of a ∈ R is the element b ∈ R, if the following equations hold

[16–18]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.
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There is at most one b such that above conditions hold (see [17]), and such b is denoted by a†. The set of all

Moore–Penrose invertible elements of R will be denoted by R†. If a is invertible, then a† coincides with the

ordinary inverse of a.

If δ ⊂ {1, 2, 3, 4} and b satisfies the equations (i) for all i ∈ δ, then b is an δ–inverse of a. The set of all

δ–inverse of a is denote by a{δ}. Notice that a{1, 2, 3, 4} = {a†}.

The following result is well-known and frequently used in the rest of the paper.

Theorem 1.1. [7, 14] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(f) a∗ = a†aa∗ = a∗aa†;

(g) a† = (a∗a)†a∗ = a∗(aa∗)†;

(h) (a∗)† = a(a∗a)† = (aa∗)†a.

From the last theorem we see that the following chain of equivalences hold:

a ∈ R† ⇔ a∗ ∈ R† ⇔ aa∗ ∈ R† ⇔ a∗a ∈ R†.

Let A be a unital C∗–algebra with the unit 1. An element a ∈ A is regular if there exists some b ∈ A

satisfying aba = a.

Theorem 1.2. [10] In a unital C∗–algebraA, a ∈ A is MP-invertible if and only if a is regular.

An element p ∈ A is a projection if p = p2 = p∗. Set P(A) = {p ∈ A : p2 = p = p∗}. In [13], Li proved

the following important results which consider some equivalent conditions for pq, (p, q ∈ P(A)), to be

Moore-Penrose invertible and formula for Moore-Penrose inverse of product of projection in a C∗–algebra.

Lemma 1.3. [13] Let p, q ∈ P(A). Then the following statements are equivalent:

(a) pq is Moore-Penrose invertible;

(b) qp is Moore-Penrose invertible;

(c) (1 − p)(1 − q) is Moore-Penrose invertible;

(d) (1 − q)(1 − p) is Moore-Penrose invertible.
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Theorem 1.4. [13] Let p, q ∈ P(A). If pq is Moore-Penrose invertible, then:

(qp)† = pq − p[(1 − p)(1 − q)]†q.

The reverse order law for the Moore-Penrose inverse is an useful computational tool in applications

(solving linear equations in linear algebra or numerical analysis), and it is also interesting from the theoretical

point of view.

The reverse-order law (ab)† = b†(a†abb†)†a† was first studied by Galperin and Waksman [8]. A Hilbert

space version of their result was given by Isumino [11]. They proved that (ab)† = b†(a†abb†)†a† holds if and

only ifR((a∗)†b) = R(ab) andR(b†a∗) = R((ab)∗), for linear operators a and b, whereR(·) denotes the range of an

operator. Many results concerning the reverse order law (ab)† = b†(a†abb†)†a† for complex matrices appeared

in Tian’s papers [19] and [20], where the author used finite dimensional methods (mostly properties of the

rank of a complex matrices). Moreover, the operator analogues of these results are proved in [4] for linear

operators on Hilbert spaces, using the operator matrices. In [15], a set of equivalent conditions for this

reverse order rule for the Moore-Penrose inverse in the setting of C∗-algebra is presented, extending the

results for complex matrices from [20]. This result can be formulate for elements in ring with involution in

the following way.

Theorem 1.5. [15] Let R be a ring with involution and let a, b ∈ R†. Then the following statements are equivalent:

(a) ab, a†abb† ∈ R† and (ab)† = b†(a†abb†)†a†;

(b) ab, a†abb† ∈ R† and (a†abb†)† = b(ab)†a;

(c) ab, a†ab, abb† ∈ R† and (ab)† = (a†ab)†a† = b†(abb†)†;

(d) ab, a†ab, abb† ∈ R†, (a†ab)† = (ab)†a and (abb†)† = b(ab)†;

(e) a†ab, abb†, a†abb† ∈ R†, (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a†;

(f) ab, a∗abb∗ ∈ R† and (ab)† = b∗(a∗abb∗)†a∗;

(g) ab, a∗abb∗ ∈ R† and (a∗abb∗)† = (b∗)†(ab)†(a∗)†.

In this paper we present new results for the reverse order law (ab)† = b†(a†abb†)†a† in rings with

involution. Thus, we extend the known results for matrices [19] and for Hilbert space operators [4] to

more general settings. The most important properties of the MP-inverse will be used in proving various

equivalent conditions such that the reverse order law (ab)† = b†(a†abb†)†a† holds. Although these results are

known, we use different methods, depending on algebraic properties of rings with involution.
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2. Reverse Order Law in Rings

In this section we present necessary and sufficient conditions such that the reverse order law (ab)† =

b†(a†abb†)†a† holds.

Theorem 2.1. Let R be a ring with involution and let a, b ∈ R†. Then the following statements are equivalent:

(a1) ab, a†abb† ∈ R† and (ab)† = b†(a†abb†)†a†;

(a2) ab, a∗abb∗ ∈ R† and (ab)† = b∗(a∗abb∗)†a∗;

(b1) (a†)∗b, a†abb† ∈ R† and [(a†)∗b]† = b†(a†abb†)†a∗;

(b2) (a†)∗b, (a∗a)†bb∗ ∈ R† and [(a†)∗b]† = b∗[(a∗a)†bb∗]†a†;

(c1) a(b†)∗, a†abb† ∈ R† and [a(b†)∗]† = b∗(a†abb†)†a†;

(c2) a(b†)∗, a∗a(bb∗)† ∈ R† and [a(b†)∗]† = b†[a∗a(bb∗)†]†a∗;

(d1) b†a†, bb†a†a ∈ R† and (b†a†)† = a(bb†a†a)†b;

(d2) b†a†, (bb∗)†(a∗a)† ∈ R† and (b†a†)† = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗;

(e1) a†ab, abb† ∈ R† and (a†ab)†a† = b†(abb†)†;

(e2) a†ab, (a†)∗bb† ∈ R† and (a†ab)†a∗ = b†[(a†)∗bb†]†;

(e3) a†a(b†)∗, abb† ∈ R† and [a†a(b†)∗]†a† = b∗(abb†)†;

(e4) bb†a†, b†a†a ∈ R† and (bb†a†)†b = a(b†a†a)†;

(e5) a∗ab, abb∗ ∈ R† and (a∗ab)†a∗ = b∗(abb∗)†;

(e6) (a∗a)†b, (a†)∗bb∗ ∈ R† and [(a∗a)†b]†a† = b∗[(a†)∗bb∗]†;

(e7) a∗a(b†)∗, a(bb∗)† ∈ R† and [a∗a(b†)∗]†a∗ = b†[a(bb∗)†]†;

(e8) (a†)∗(bb∗)†, (a∗a)†(b†)∗ ∈ R† and b†[(a†)∗(bb∗)†]† = [(a∗a)†(b†)∗]†a†;

(e9) aa∗abb∗b, a∗abb∗ ∈ R† and (aa∗abb∗b)† = b†(a∗abb∗)†a†;

(f1) a†ab, abb†, a†abb† ∈ R†, (a†ab)† = b†(a†abb†)† and (abb†)† = (a†abb†)†a†;

(f2) a†ab, abb†, a†abb∗, a∗abb† ∈ R†, (a†ab)† = b∗(a†abb∗)† and (abb†)† = (a∗abb†)†a∗.
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Proof. The equivalences (a1)⇔ (a2)⇔ (f1) follow from Theorem 1.5.

(a1)⇒ (b1): Using the hypothesis (ab)† = b†(a†abb†)†a† and Theorem 1.1, we get

(a†)∗bb†(a†abb†)†a∗(a†)∗b = (a†)∗a†(abb†(a†abb†)†a†ab) = (a†)∗a†ab = (a†)∗b,

b†(a†abb†)†a∗(a†)∗bb†(a†abb†)†a∗ = (b†(a†abb†)†a†abb†(a†abb†)†a†)aa∗ = b†(a†abb†)†a†aa∗

= b†(a†abb†)†a∗,

((a†)∗bb†(a†abb†)†a∗)∗ = ((a†)∗a†abb†(a†abb†)†a∗)∗ = aa†abb†(a†abb†)†a†

= abb†(a†abb†)†a† = (abb†(a†abb†)†a†)∗

= (aa†abb†(a†abb†)†a†)∗ = (a†)∗a†abb†(a†abb†)†a∗

= (a†)∗bb†(a†abb†)†a∗,

(b†(a†abb†)†a∗(a†)∗b)∗ = (b†(a†abb†)†a†ab)∗ = b†(a†abb†)†a†ab = b†(a†abb†)†a∗(a†)∗b.

Hence, by these four equalities and the definition of MP-inverse, we deduce that (a†)∗b ∈ R† and [(a†)∗b]† =

b†(a†abb†)†a∗.

(b1)⇒ (a1): Since

abb†(a†abb†)†a†ab = a(a†abb†(a†abb†)†a†abb†)b = aa†abb†b = ab, (1)

b†(a†abb†)†a†abb†(a†abb†)†a† = b†(a†abb†)†a†, (2)

we conclude that b†(a†abb†)†a† ∈ (ab){1, 2}. From [(a†)∗b]† = b†(a†abb†)†a∗, we have that the elements

(a†)∗bb†(a†abb†)†a∗, b†(a†abb†)†a∗(a†)∗b are self-adjoin. Then

(abb†(a†abb†)†a†)∗ = (aa†abb†(a†abb†)†a†)∗ = (a†)∗a†abb†(a†abb†)†a∗

= (a†)∗bb†(a†abb†)†a∗ = ((a†)∗bb†(a†abb†)†a∗)∗

= ((a†)∗a†abb†(a†abb†)†a∗)∗ = aa†abb†(a†abb†)†a†

= abb†(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = (b†(a†abb†)†a∗(a†)∗b)∗ = b†(a†abb†)†a∗(a†)∗b

= b†(a†abb†)†a†ab,

i.e. abb†(a†abb†)†a†, b†(a†abb†)†a†ab are self-adjoin too. Therefore, ab ∈ R† and (ab)† = b†(a†abb†)†a†.

(a1)⇒ (c1): By the definition of MP-inverse and Theorem 1.1, we obtain

a(b†)∗b∗(a†abb†)†a†a(b†)∗ = a(a†abb†(a†abb†)†a†abb†)(b†)∗ = aa†abb†(b†)∗ = a(b†)∗,

b∗(a†abb†)†a†a(b†)∗b∗(a†abb†)†a† = b∗(a†abb†)†a†abb†(a†abb†)†a† = b∗(a†abb†)†a†,
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i.e. b∗(a†abb†)†a† ∈ [a(b†)∗]{1, 2}. The condition (ab)† = b†(a†abb†)†a† give that the right hand side of the

equality

a(b†)∗b∗(a†abb†)†a† = abb†(a†abb†)†a†

is self-adjoint element. So, a(b†)∗b∗(a†abb†)†a† is self-adjoint too. In the same way, from the equality

(b∗(a†abb†)†a†a(b†)∗)∗ = (b∗(a†abb†)†a†abb†(b†)∗)∗ = b†(a†abb†)†a†abb†b = b†(a†abb†)†a†ab,

we conclude that b∗(a†abb†)†a†a(b†)∗ is self-adjoint. Hence, a(b†)∗ ∈ R† and [a(b†)∗]† = b∗(a†abb†)†a†.

(c1) ⇒ (a1): By (1) and (2), we have b†(a†abb†)†a† ∈ (ab){1, 2}. Since [a(b†)∗]† = b∗(a†abb†)†a†, then

a(b†)∗b∗(a†abb†)†a†, b∗(a†abb†)†a†a(b†)∗ are self-adjoin. Thus, from

abb†(a†abb†)†a† = a(b†)∗b∗(a†abb†)†a†,

(b†(a†abb†)†a†ab)∗ = (b†(a†abb†)†a†abb†b)∗ = b∗(a†abb†)†a†abb†(b†)∗ = b∗(a†abb†)†a†a(b†)∗,

we deduce that the elements abb†(a†abb†)†a†, b†(a†abb†)†a†ab are self-adjoin too. So, we get that ab ∈ R† and

(ab)† = b†(a†abb†)†a†, i.e. the condition (a1) is satisfied.

(a1)⇒ (d1): The condition a†abb† ∈ R†, by Theorem 1.1, implies bb†a†a = (a†abb†)∗ ∈ R†. Now we prove

that a(bb†a†a)†b ∈ (b†a†){1, 2}:

b†a†a(bb†a†a)†bb†a† = b†(bb†a†a(bb†a†a)†bb†a†a)a† = b†bb†a†aa† = b†a†,

a(bb†a†a)†bb†a†a(bb†a†a)†b = a(bb†a†a)†b.

Further, by (a1)⇔ (c1) and the equality

(b†a†a(bb†a†a)†b)∗ = b∗[(bb†a†a)∗]†a†a(b†)∗ = b∗(a†abb†)†a†a(b†)∗,

it follows that the element b†a†a(bb†a†a)†b is self-adjoint. To conclude that a(bb†a†a)†bb†a† is self-adjoint, we

consider the equivalence (a1)⇔ (b1) and the equality

(a(bb†a†a)†bb†a†)∗ = (a†)∗bb†[(bb†a†a)∗]†a∗ = (a†)∗bb†(a†abb†)†a∗.

Therefore, b†a† ∈ R† and (b†a†)† = a(bb†a†a)†b.

(d1)⇒ (a1): We observe that by (1) and (2), b†(a†abb†)†a† ∈ (ab){1, 2}. If the hypothesis (b†a†)† = a(bb†a†a)†b

holds, the elements b†a†a(bb†a†a)†b and a(bb†a†a)†bb†a† are self-adjoint. Then, from

abb†(a†abb†)†a† = ((a†)∗[(a†abb†)∗]†bb†a∗)∗ = ((a†)∗(bb†a†a)†bb†a†aa∗)∗

= a(bb†a†a)†bb†a†aa† = a(bb†a†a)†bb†a†

and

b†(a†abb†)†a†ab = (b∗a†a[(a†abb†)∗]†(b†)∗)∗ = (b∗bb†a†a(bb†a†a)†(b†)∗)∗

= b†bb†a†a(bb†a†a)†b = b†a†a(bb†a†a)†b,
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we have b†(a†abb†)†a† ∈ (ab){3, 4}. So, ab ∈ R† and (ab)† = b†(a†abb†)†a†.

(b1)⇒ (b2): First we will prove that (a∗a)†bb∗ = a†(a†)∗bb∗ ∈ R† and (a†(a†)∗bb∗)† = (b†)∗[(a†)∗b]†a. Indeed,

the equalities

a†(a†)∗bb∗(b†)∗[(a†)∗b]†aa†(a†)∗bb∗ = a†((a†)∗b[(a†)∗b]†(a†)∗b)b∗ = a†(a†)∗bb∗ (3)

and

(b†)∗[(a†)∗b]†aa†(a†)∗bb∗(b†)∗[(a†)∗b]†a = (b†)∗[(a†)∗b]†(a†)∗b[(a†)∗b]†a

= (b†)∗[(a†)∗b]†a (4)

imply that (b†)∗[(a†)∗b]†a ∈ (a†(a†)∗bb∗){1, 2}. The assumption [(a†)∗b]† = b†(a†abb†)†a∗ gives

a†(a†)∗bb∗(b†)∗[(a†)∗b]†a = a†(a†)∗b[(a†)∗b]†a = (a∗(a†)∗b[(a†)∗b]†(a†)∗)∗

= (a†abb†(a†abb†)†a∗(a†)∗)∗

= a†aa†abb†(a†abb†)† = a†abb†(a†abb†)†

and

(b†)∗[(a†)∗b]†aa†(a†)∗bb∗ = (b†)∗[(a†)∗b]†(a†)∗bb∗ = (b[(a†)∗b]†(a†)∗bb†)∗

= (bb†(a†abb†)†a∗(a†)∗bb†)∗

= (bb†(a†abb†)†a†abb†)∗

= (a†abb†)†a†abb†bb† = (a†abb†)†a†abb†.

Since a†abb†(a†abb†)† and (a†abb†)†a†abb† are self-adjoint, it follows that a†(a†)∗bb∗(b†)∗[(a†)∗b]†a and

(b†)∗[(a†)∗b]†aa†(a†)∗bb∗ are self-adjoint too. Hence, we see that [(a∗a)†bb∗]† = (b†)∗[(a†)∗b]†a.

Now we check that [(a†)∗b]† = b∗(b†)∗[(a†)∗b]†aa† = b†b[(a†)∗b]†aa†:

(a†)∗bb†b[(a†)∗b]†aa†(a†)∗b = (a†)∗b[(a†)∗b]†(a†)∗b = (a†)∗b,

b†b[(a†)∗b]†aa†(a†)∗bb†b[(a†)∗b]†aa† = b†b[(a†)∗b]†(a†)∗b[(a†)∗b]†aa† = b†b[(a†)∗b]†aa†,

((a†)∗bb†b[(a†)∗b]†aa†)∗ = aa†(a†)∗b[(a†)∗b]† = (a†)∗b[(a†)∗b]†

= ((a†)∗b[(a†)∗b]†)∗ = (aa†(a†)∗b[(a†)∗b]†)∗

= (a†)∗b[(a†)∗b]†aa† = (a†)∗bb†b[(a†)∗b]†aa†,

(b†b[(a†)∗b]†aa†(a†)∗b)∗ = [(a†)∗b]†(a†)∗bb†b = [(a†)∗b]†(a†)∗b

= ([(a†)∗b]†(a†)∗b)∗ = ([(a†)∗b]†(a†)∗bb†b)∗

= b†b[(a†)∗b]†(a†)∗b = b†b[(a†)∗b]†aa†(a†)∗b.
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Finally, by the equality [(a∗a)†bb∗]† = (b†)∗[(a†)∗b]†a, we have

[(a†)∗b]† = b∗(b†)∗[(a†)∗b]†aa† = b∗[(a∗a)†bb∗]†a†.

Thus, the condition (b2) is satisfied.

(b2)⇒ (b1): To prove a†abb† ∈ R† and (a†abb†)† = b[(a†)∗b]†(a†)∗, notice that

a†abb†b[(a†)∗b]†(a†)∗a†abb† = a∗((a†)∗b[(a†)∗b]†(a†)∗b)b† = a∗(a†)∗bb†

= a†abb†, (5)

b[(a†)∗b]†(a†)∗a†abb†b[(a†)∗b]†(a†)∗ = b[(a†)∗b]†(a†)∗b[(a†)∗b]†(a†)∗

= b[(a†)∗b]†(a†)∗, (6)

i.e. b[(a†)∗b]†(a†)∗ ∈ (a†abb†){1, 2}. Using the assumption [(a†)∗b]† = b∗[(a∗a)†bb∗]†a†, we get

a†abb†b[(a†)∗b]†(a†)∗ = a∗(a†)∗b[(a†)∗b]†(a†)∗ = (a†(a†)∗b[(a†)∗b]†a)∗

= ((a∗a)†bb∗[(a∗a)†bb∗]†a†a)∗

= a†a(a∗a)†bb∗[(a∗a)†bb∗]† = a†(a†)∗bb∗[(a∗a)†bb∗]†

= (a∗a)†bb∗[(a∗a)†bb∗]†

and

b[(a†)∗b]†(a†)∗a†abb† = b[(a†)∗b]†(a†)∗bb† = ((b†)∗[(a†)∗b]†(a†)∗bb∗)∗

= ((b†)∗b∗[(a∗a)†bb∗]†a†(a†)∗bb∗)∗

= ((b†)∗b∗[(a∗a)†bb∗]†(a∗a)†bb∗)∗

= [(a∗a)†bb∗]†(a∗a)†bb∗bb†

= [(a∗a)†bb∗]†(a∗a)†bb∗,

i.e. a†abb†b[(a†)∗b]†(a†)∗ and b[(a†)∗b]†(a†)∗a†abb† are self-adjoint elements. Consequently, a†abb† ∈ R† and

(a†abb†)† = b[(a†)∗b]†(a†)∗. Then, we will show that [(a†)∗b]† = b†(a†abb†)†a∗. The equalities

(a†)∗bb†(a†abb†)†a∗(a†)∗b = (a†)∗(a†abb†(a†abb†)†a†abb†)b = (a†)∗a†abb†b = (a†)∗b,

b†(a†abb†)†a∗(a†)∗bb†(a†abb†)†a∗ = b†(a†abb†)†a†abb†(a†abb†)†a∗ = b†(a†abb†)†a∗,

yield b†(a†abb†)†a∗ ∈ [(a†)∗b]{1, 2}. By (a†abb†)† = b[(a†)∗b]†(a†)∗, we get that

(a†)∗bb†(a†abb†)†a∗ = (a†)∗bb†b[(a†)∗b]†(a†)∗a∗ = (aa†(a†)∗b[(a†)∗b]†)∗

= ((a†)∗b[(a†)∗b]†)∗ = (a†)∗b[(a†)∗b]†,

b†(a†abb†)†a∗(a†)∗b = b†b[(a†)∗b]†(a†)∗a∗(a†)∗b = b†b[(a†)∗b]†(a†)∗b

= ([(a†)∗b]†(a†)∗bb†b)∗ = ([(a†)∗b]†(a†)∗b)∗ = [(a†)∗b]†(a†)∗b,
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implying b†(a†abb†)†a∗ ∈ [(a†)∗b]{3, 4}. Hence, the statement (b1) holds.

(c1)⇒ (c2): By definition, we check that a∗a(bb∗)† = a∗a(b†)∗b† ∈ R† and [a∗a(bb∗)†]† = b[a(b†)∗]†(a†)∗. From

a∗a(b†)∗b†b[a(b†)∗]†(a†)∗a∗a(b†)∗b† = a∗(a(b†)∗[a(b†)∗]†a(b†)∗)b† = a∗a(b†)∗b† (7)

and

b[a(b†)∗]†(a†)∗a∗a(b†)∗b†b[a(b†)∗]†(a†)∗ = b[a(b†)∗]†a(b†)∗[a(b†)∗]†(a†)∗

= b[a(b†)∗]†(a†)∗ (8)

we deduce that b[a(b†)∗]†(a†)∗ ∈ (a∗a(bb∗)†){1, 2}. The condition [a(b†)∗]† = b∗(a†abb†)†a† gives

a∗a(b†)∗b†b[a(b†)∗]†(a†)∗ = a∗a(b†)∗[a(b†)∗]†(a†)∗ = (a†a(b†)∗[a(b†)∗]†a)∗

= (a†a(b†)∗b∗(a†abb†)†a†a)∗ = (a†abb†(a†abb†)†a†a)∗

= a†aa†abb†(a†abb†)† = a†abb†(a†abb†)† is self − adjoint

and

b[a(b†)∗]†(a†)∗a∗a(b†)∗b† = b[a(b†)∗]†a(b†)∗b† = ((b†)∗[a(b†)∗]†a(b†)∗b∗)∗

= ((b†)∗b∗(a†abb†)†a†a(b†)∗b∗)∗ = (bb†(a†abb†)†a†abb†)∗

= (a†abb†)†a†abb†bb† = (a†abb†)†a†abb† is self − adjoint.

Thus, a∗a(bb∗)† ∈ R† and [a∗a(bb∗)†]† = b[a(b†)∗]†(a†)∗. To obtain the equality [a(b†)∗]† = b†[a∗a(bb∗)†]†a∗ it is

enough to prove that [a(b†)∗]† = b†b[a(b†)∗]†(a†)∗a∗ = b†b[a(b†)∗]†aa†. Since

a(b†)∗b†b[a(b†)∗]†aa†a(b†)∗ = a(b†)∗[a(b†)∗]†a(b†)∗ = a(b†)∗,

b†b[a(b†)∗]†aa†a(b†)∗b†b[a(b†)∗]†aa† = b†b[a(b†)∗]†a(b†)∗[a(b†)∗]†aa† = b†b[a(b†)∗]†aa†,

(a(b†)∗b†b[a(b†)∗]†aa†)∗ = (a(b†)∗[a(b†)∗]†aa†)∗ = aa†a(b†)∗[a(b†)∗]†

= a(b†)∗[a(b†)∗]† is self − adjoint,

(b†b[a(b†)∗]†aa†a(b†)∗)∗ = (b†b[a(b†)∗]†a(b†)∗)∗ = [a(b†)∗]†a(b†)∗b†b

= [a(b†)∗]†a(b†)∗ is self − adjoint,

then [a(b†)∗]† = b†b[a(b†)∗]†aa† = b†[a∗a(bb∗)†]†a∗ and (c2) is satisfied.

(c2)⇒ (c1): First we will prove that a†abb† ∈ R† and (a†abb†)† = (b†)∗[a(b†)∗]†a. The equalities

a†abb†(b†)∗[a(b†)∗]†aa†abb† = a†(a(b†)∗[a(b†)∗]†a(b†)∗)b∗ = a†a(b†)∗b∗ = a†abb†,

(b†)∗[a(b†)∗]†aa†abb†(b†)∗[a(b†)∗]†a = (b†)∗[a(b†)∗]†a(b†)∗[a(b†)∗]†a = (b†)∗[a(b†)∗]†a,
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imply that (b†)∗[a(b†)∗]†a ∈ (a†abb†){1, 2}. Using the hypothesis [a(b†)∗]† = b†[a∗a(bb∗)†]†a∗, we get that

a†abb†(b†)∗[a(b†)∗]†a = a†a(b†)∗[a(b†)∗]†a = (a∗a(b†)∗[a(b†)∗]†(a†)∗)∗

= (a∗a(b†)∗b†[a∗a(bb∗)†]†a∗(a†)∗)∗ = (a∗a(bb∗)†[a∗a(bb∗)†]†a∗(a†)∗)∗

= a†aa∗a(bb∗)†[a∗a(bb∗)†]† = a∗a(bb∗)†[a∗a(bb∗)†]† is self − adjoint

and

(b†)∗[a(b†)∗]†aa†abb† = (b†)∗[a(b†)∗]†a(b†)∗b∗ = (b[a(b†)∗]†a(b†)∗b†)∗

= (bb†[a∗a(bb∗)†]†a∗a(b†)∗b†)∗ = (bb†[a∗a(bb∗)†]†a∗a(bb∗)†)∗

= [a∗a(bb∗)†]†a∗a(bb∗)†bb† = [a∗a(bb∗)†]†a∗a(b†)∗b†

= [a∗a(bb∗)†]†a∗a(bb∗)† is self − adjoint.

Hence, we conclude that (a†abb†)† = (b†)∗[a(b†)∗]†a. Now in order to show that the equality [a(b†)∗]† =

b∗(a†abb†)†a† holds, we prove that [a(b†)∗]† = b∗(b†)∗[a(b†)∗]†aa† = b†b[a(b†)∗]†aa†. Indeed, by definition and

a(b†)∗b†b[a(b†)∗]†aa†a(b†)∗ = a(b†)∗[a(b†)∗]†a(b†)∗ = a(b†)∗,

b†b[a(b†)∗]†aa†a(b†)∗b†b[a(b†)∗]†aa† = b†b[a(b†)∗]†a(b†)∗[a(b†)∗]†aa† = b†b[a(b†)∗]†aa†,

(a(b†)∗b†b[a(b†)∗]†aa†)∗ = (a(b†)∗[a(b†)∗]†aa†)∗ = aa†a(b†)∗[a(b†)∗]† = a(b†)∗[a(b†)∗]† is self − adjoint,

(b†b[a(b†)∗]†aa†a(b†)∗)∗ = (b†b[a(b†)∗]†a(b†)∗)∗ = [a(b†)∗]†a(b†)∗b†b = [a(b†)∗]†a(b†)∗ is self − adjoint.

we have [a(b†)∗]† = b†b[a(b†)∗]†aa† = b∗(a†abb†)†a†. So, the condition (c1) is satisfied.

(d1)⇒ (d2): Let us check that (bb∗)†(a∗a)† = (b†)∗b†a†(a†)∗ ∈ R† and [(b†)∗b†a†(a†)∗]† = a∗(b†a†)†b∗. By

(b†)∗b†a†(a†)∗a∗(b†a†)†b∗(b†)∗b†a†(a†)∗ = (b†)∗b†a†(b†a†)†b†a†(a†)∗

= (b†)∗b†a†(a†)∗, (9)

a∗(b†a†)†b∗(b†)∗b†a†(a†)∗a∗(b†a†)†b∗ = a∗(b†a†)†b†a†(b†a†)†b∗

= a∗(b†a†)†b∗, (10)

obviously, a∗(b†a†)†b∗ ∈ [(b†)∗b†a†(a†)∗]{1, 2}. Further, from the condition (b†a†)† = a(bb†a†a)†b, we get

(b†)∗b†a†(a†)∗a∗(b†a†)†b∗ = (b†)∗b†a†(b†a†)†b∗ = (bb†a†(b†a†)†b†)∗

= (bb†a†a(bb†a†a)†bb†)∗ = bb†bb†a†a(bb†a†a)†

= bb†a†a(bb†a†a)† is self − adjoint

and

a∗(b†a†)†b∗(b†)∗b†a†(a†)∗ = a∗(b†a†)†b†a†(a†)∗ = (a†(b†a†)†b†a†a)∗

= (a†a(bb†a†a)†bb†a†a)∗ = (bb†a†a)†bb†a†aa†a

= (bb†a†a)†bb†a†a is self − adjoint,
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i.e. a∗(b†a†)†b∗ ∈ [(b†)∗b†a†(a†)∗]{3, 4}. Thus, [(bb∗)†(a∗a)†]† = a∗(b†a†)†b∗. Then, a direct computation shows

that (b†a†)† = (a†)∗a∗(b†a†)†b∗(b†)∗ = aa†(b†a†)†b†b:

b†a†aa†(b†a†)†b†bb†a† = b†a†(b†a†)†b†a† = b†a†,

aa†(b†a†)†b†bb†a†aa†(b†a†)†b†b = aa†(b†a†)†b†a†(b†a†)†b†b = aa†(b†a†)†b†b,

(b†a†aa†(b†a†)†b†b)∗ = (b†a†(b†a†)†b†b)∗ = b†bb†a†(b†a†)†

= b†a†(b†a†)† is self − adjoint,

(aa†(b†a†)†b†bb†a†)∗ = (aa†(b†a†)†b†a†)∗ = (b†a†)†b†a†aa†

= (b†a†)†b†a† is self − adjoint.

Therefore, (b†a†)† = (a†)∗a∗(b†a†)†b∗(b†)∗ = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗, by [(bb∗)†(a∗a)†]† = a∗(b†a†)†b∗.

(d2) ⇒ (d1): To prove bb†a†a ∈ R† and (bb†a†a)† = a†(b†a†)†b†, first we have a†(b†a†)†b† ∈ (bb†a†a){1, 2},

from

bb†a†aa†(b†a†)†b†bb†a†a = b(b†a†(b†a†)†b†a†)a = bb†a†a,

a†(b†a†)†b†bb†a†aa†(b†a†)†b† = a†(b†a†)†b†a†(b†a†)†b† = a†(b†a†)†b†.

We use the hypothesis (b†a†)† = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗ to obtain that a†(b†a†)†b† ∈ (bb†a†a){3, 4} in the follow-

ing way:

bb†a†aa†(b†a†)†b† = bb†a†(b†a†)†b† = ((b†)∗b†a†(b†a†)†b∗)∗ = ((b†)∗b†a†(a†)∗[(bb∗)†(a∗a)†]†(b†)∗b∗)∗

= ((bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†(b†)∗b∗)∗ = bb†(bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†

= bb†(b†)∗b†(a∗a)†[(bb∗)†(a∗a)†]† = (bb∗)†(a∗a)†[(bb∗)†(a∗a)†]† is self − adjoint,

a†(b†a†)†b†bb†a†a = a†(b†a†)†b†a†a = (a∗(b†a†)†b†a†(a†)∗)∗ = (a∗(a†)∗[(bb∗)†(a∗a)†]†(b†)∗b†a†(a†)∗)∗

= (a∗(a†)∗[(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†)∗ = [(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†a†a

= [(bb∗)†(a∗a)†]†(bb∗)†a†(a†)∗a†a = [(bb∗)†(a∗a)†]†(bb∗)†(a∗a)† is self − adjoint.

So, (bb†a†a)† = a†(b†a†)†b† and then to obtain (b†a†)† = a(bb†a†a)†b it is enough to check that (b†a†)† =

aa†(b†a†)†b†b:

b†a†aa†(b†a†)†b†bb†a† = b†a†(b†a†)†b†a† = b†a†,

aa†(b†a†)†b†bb†a†aa†(b†a†)†b†b = aa†(b†a†)†b†a†(b†a†)†b†b = aa†(b†a†)†b†b,

(b†a†aa†(b†a†)†b†b)∗ = (b†a†(b†a†)†b†b)∗ = b†bb†a†(b†a†)†

= b†a†(b†a†)† is self − adjoint,

(aa†(b†a†)†b†bb†a†)∗ = (aa†(b†a†)†b†a†)∗ = (b†a†)†b†a†aa†

= (b†a†)†b†a† is self − adjoint.
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Thus, the condition (d1) is satisfied.

(a1)⇒ (e1): This implication follows from Theorem 1.5.

(e1)⇒ (a1): We will verify that a†abb† ∈ R† and (a†abb†)† = b(a†ab)†. Obviously,

a†abb†b(a†ab)†a†abb† = (a†ab(a†ab)†a†ab)b† = a†abb†, (11)

b(a†ab)†a†abb†b(a†ab)† = b(a†ab)†a†ab(a†ab)† = b(a†ab)†, (12)

a†abb†b(a†ab)† = a†ab(a†ab)† is self − adjoint. (13)

From (a†ab)†a† = b†(abb†)†, we have

b(a†ab)†a†abb† = bb†(abb†)†abb† = ((abb†)†abb†bb†)∗ = (abb†)†abb†,

which implies that element b(a†ab)†a†abb† is self-adjoint. Thus, the conditions a†abb† ∈ R† and (a†abb†)† =

b(a†ab)† hold. By this equality and (e1), we obtain

b†(a†abb†)†a† = b†b(a†ab)†a† = b†bb†(abb†)† = b†(abb†)†. (14)

From

abb†(abb†)†ab = (abb†(abb†)†abb†)b = abb†b = ab,

b†(abb†)†abb†(abb†)† = b†(abb†)†,

we conclude that b†(abb†)† ∈ (ab){1, 2}. Next, abb†(abb†)† is self-adjoint and, by (e1), b†(abb†)†ab = (a†ab)†a†ab

is self-adjoint too. Consequently, ab ∈ R† and (ab)† = b†(abb†)†. Then, by (14), we observe that (ab)† =

b†(a†abb†)†a†. Hence, the statement (a1) is satisfied. Notice that from (e1) follows (ab)† = b†(abb†)† = (a†ab)†a†.

(b1)⇒ (e2): Let us remark that b†(a†abb†)† ∈ (a†ab){1, 2, 3} follows from

a†abb†(a†abb†)†a†ab = (a†abb†(a†abb†)†a†abb†)b = a†abb†b = a†ab,

b†(a†abb†)†a†abb†(a†abb†)† = b†(a†abb†)†,

a†abb†(a†abb†)† is self − adjoint.

Similarly, (a†abb†)†a∗ ∈ [(a†)∗bb†]{1, 2, 4} follows from

(a†)∗bb†(a†abb†)†a∗(a†)∗bb† = (a†)∗(a†abb†(a†abb†)†a†abb†) = (a†)∗a†abb† = (a†)∗bb†,

(a†abb†)†a∗(a†)∗bb†(a†abb†)†a∗ = (a†abb†)†a†abb†(a†abb†)†a∗ = (a†abb†)†a∗,

(a†abb†)†a∗(a†)∗bb† = (a†abb†)†a†abb† is self − adjoint.

The assumption [(a†)∗b]† = b†(a†abb†)†a∗ gives that

b†(a†abb†)†a†ab = b†(a†abb†)†a∗(a†)∗b is self − adjoint,
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(a†)∗bb†(a†abb†)†a∗ is self − adjoint,

i.e. b†(a†abb†)† ∈ (a†ab){4} and (a†abb†)†a∗ ∈ [(a†)∗bb†]{3}. Therefore, a†ab, (a†)∗bb† ∈ R†, (a†ab)† = b†(a†abb†)†

and [(a†)∗bb†]† = (a†abb†)†a∗. Now, (a†ab)†a∗ = b†(a†abb†)†a∗(= [(a†)∗b]†) = b†[(a†)∗bb†]†, i.e. the condition (e2)

is satisfied.

(e2) ⇒ (b1): Notice that, by (11), (12) and (13), we have b(a†ab)† ∈ (a†abb†){1, 2, 3}. The condition

(a†ab)†a∗ = b†[(a†)∗bb†]† implies

b(a†ab)†a†abb† = b(a†ab)†a∗(a†)∗bb† = bb†[(a†)∗bb†]†(a†)∗bb†

= ([(a†)∗bb†]†(a†)∗bb†bb†)∗ = ([(a†)∗bb†]†(a†)∗bb†)∗

= [(a†)∗bb†]†(a†)∗bb† is self − adjoint.

So, a†abb† ∈ R† and (a†abb†)† = b(a†ab)†. Then

b†(a†abb†)†a∗ = b†b(a†ab)†a∗ = b†bb†[(a†)∗bb†]† = b†[(a†)∗bb†]†. (15)

To get [(a†)∗b]† = b†(a†abb†)†a∗, we will prove that [(a†)∗b]† = b†[(a†)∗bb†]†. Since

(a†)∗bb†[(a†)∗bb†]†(a†)∗b = ((a†)∗bb†[(a†)∗bb†]†(a†)∗bb†)b = (a†)∗bb†b = (a†)∗b,

b†[(a†)∗bb†]†(a†)∗bb†[(a†)∗bb†]† = b†[(a†)∗bb†]†,

(a†)∗bb†[(a†)∗bb†]† is self − adjoint,

we see that b†[(a†)∗bb†]† ∈ [(a†)∗b]{1, 2, 3}. Using (e2), we have

b†[(a†)∗bb†]†(a†)∗b = (a†ab)†a∗(a†)∗b = (a†ab)†a†ab,

i.e. b†[(a†)∗bb†]† ∈ [(a†)∗b]{4}. Thus, (a†)∗b ∈ R†, [(a†)∗b]† = b†[(a†)∗bb†]† and, by (15), [(a†)∗b]† = b†(a†abb†)†a∗.

(c1)⇒ (e3): By elementary computations, we obtain

a†a(b†)∗b∗(a†abb†)†a†a(b†)∗ = (a†abb†(a†abb†)†a†abb†)(b†)∗ = a†abb†(b†)∗ = a†a(b†)∗,

b∗(a†abb†)†a†a(b†)∗b∗(a†abb†)† = b∗(a†abb†)†a†abb†(a†abb†)† = b∗(a†abb†)†,

a†a(b†)∗b∗(a†abb†)† = a†abb†(a†abb†)† is self − adjoint,

that is b∗(a†abb†)† ∈ [a†a(b†)∗]{1, 2, 3}. We easy check that (a†abb†)†a† ∈ (abb†){1, 2, 4}:

abb†(a†abb†)†a†abb† = a(a†abb†(a†abb†)†a†abb†) = aa†abb† = abb†,

(a†abb†)†a†abb†(a†abb†)†a† = (a†abb†)†a†,

(a†abb†)†a†abb† is self − adjoint.

The hypothesis [a(b†)∗]† = b∗(a†abb†)†a† implies

b∗(a†abb†)†a†a(b†)∗ is self − adjoint
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and

abb†(a†abb†)†a† = a(b†)∗b∗(a†abb†)†a† is self − adjoint.

Consequently, the statements a†a(b†)∗, abb† ∈ R†, [a†a(b†)∗]† = b∗(a†abb†)† and (abb†)† = (a†abb†)†a† hold.

Finale, we get the equality in (e3), from [a†a(b†)∗]†a† = b∗(a†abb†)†a†(= [a(b†)∗]†) = b∗(abb†)†.

(e3)⇒ (c1): First, we verify that a†abb† ∈ R† and (a†abb†)† = (abb†)†a. Indeed,

a†abb†(abb†)†aa†abb† = a†(abb†(abb†)†abb†) = a†abb†, (16)

(abb†)†aa†abb†(abb†)†a = (abb†)†abb†(abb†)†a = (abb†)†a, (17)

(abb†)†aa†abb† = (abb†)†abb† is self − adjoint. (18)

By the assumption [a†a(b†)∗]†a† = b∗(abb†)†, we have

a†abb†(abb†)†a = a†a(b†)∗b∗(abb†)†a = a†a(b†)∗[a†a(b†)∗]†a†a

= (a†aa†a(b†)∗[a†a(b†)∗]†)∗ = (a†a(b†)∗[a†a(b†)∗]†)∗

= a†a(b†)∗[a†a(b†)∗]† is self − adjoint. (19)

Hence, by (16)-(19), a†abb† ∈ R† and (a†abb†)† = (abb†)†a. Further, we obtain [a†a(b†)∗]†a† ∈ [a(b†)∗]{1, 2} as a

simple consequence of the equalities

a(b†)∗[a†a(b†)∗]†a†a(b†)∗ = a(a†a(b†)∗[a†a(b†)∗]†a†a(b†)∗) = aa†a(b†)∗ = a(b†)∗,

[a†a(b†)∗]†a†a(b†)∗[a†a(b†)∗]†a† = [a†a(b†)∗]†a†.

From (e3), we get

a(b†)∗[a†a(b†)∗]†a† = a(b†)∗b∗(abb†)† = abb†(abb†)†

which implies [a†a(b†)∗]†a† ∈ [a(b†)∗]{3}. Obviously, [a†a(b†)∗]†a†a(b†)∗ is self-adjoint and therefore, a(b†)∗ ∈ R†

and [a(b†)∗]† = [a†a(b†)∗]†a†. Now, by (a†abb†)† = (abb†)†a and (e3),

b∗(a†abb†)†a† = b∗(abb†)†aa† = [a†a(b†)∗]†a†aa† = [a†a(b†)∗]†a† = [a(b†)∗]†.

(d1)⇒ (e4): Since

bb†a†a(bb†a†a)†bb†a† = (bb†a†a(bb†a†a)†bb†a†a)a† = bb†a†aa† = bb†a†,

a(bb†a†a)†bb†a†a(bb†a†a)† = a(bb†a†a)†,

and bb†a†a(bb†a†a)† is self-adjoint, we have that a(bb†a†a)† ∈ (bb†a†){1, 2, 3}. The statement (bb†a†a)†b ∈

(b†a†a){1, 2, 4} holds because

b†a†a(bb†a†a)†bb†a†a = b†(bb†a†a(bb†a†a)†bb†a†a) = b†bb†a†a = b†a†a,

(bb†a†a)†bb†a†a(bb†a†a)†b = (bb†a†a)†b,
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and the element (bb†a†a)†bb†a†a is self-adjoint. From (b†a†)† = a(bb†a†a)†b, we conclude that the elements

a(bb†a†a)†bb†a†, b†a†a(bb†a†a)†b are self–adjoint. Hence, bb†a†, b†a†a ∈ R†, (bb†a†)† = a(bb†a†a)† and (b†a†a)† =

(bb†a†a)†b. Then, we get (bb†a†)†b = a(bb†a†a)†b(= (b†a†)†) = a(b†a†a)†.

(e4)⇒ (d1): Because

bb†a†aa†(bb†a†)†bb†a†a = (bb†a†(bb†a†)†bb†a†)a = bb†a†a,

a†(bb†a†)†bb†a†aa†(bb†a†)† = a†(bb†a†)†bb†a†(bb†a†)† = a†(bb†a†)†,

and

bb†a†aa†(bb†a†)† = bb†a†(bb†a†)† is self − adjoint,

we deduce that a†(bb†a†)† ∈ (bb†a†a){1, 2, 3}. The condition (bb†a†)†b = a(b†a†a)† gives

(a†(bb†a†)†bb†a†a)∗ = (a†a(b†a†a)†b†a†a)∗ = (b†a†a)†b†a†aa†a

= (b†a†a)†b†a†a is self − adjoint.

Thus, bb†a†a ∈ R† and (bb†a†a)† = a†(bb†a†)†. By this equality and (e4), we have

a(bb†a†a)†b = aa†(bb†a†)†b = aa†a(b†a†a)† = a(b†a†a)†.

So, to obtain (b†a†)† = a(bb†a†a)†b it is enough to prove that (b†a†)† = a(b†a†a)†. We can easy check that

a(b†a†a)† ∈ (b†a†){1, 2, 3}:

b†a†a(b†a†a)†b†a† = (b†a†a(b†a†a)†b†a†a)a† = b†a†aa† = b†a†,

a(b†a†a)†b†a†a(b†a†a)† = a(b†a†a)†,

b†a†a(b†a†a)† is self − adjoint

and,by (e4), the element a(b†a†a)†b†a† = (bb†a†)†bb†a† is self-adjoint. Therefore, b†a† ∈ R† and (b†a†)† =

a(b†a†a)† = a(bb†a†a)†b, i.e. the condition (d1) holds.

(a2) ⇒ (e5): The elementary computations show that b∗(a∗abb∗)† ∈ (a∗ab){1, 2, 3} and (a∗abb∗)†a∗ ∈

(abb∗){1, 2, 4} follow from

a∗abb∗(a∗abb∗)†a∗ab = (a∗abb∗(a∗abb∗)†a∗abb∗)(b†)∗ = a∗abb∗(b†)∗ = a∗ab,

b∗(a∗abb∗)†a∗abb∗(a∗abb∗)† = b∗(a∗abb∗)†,

a∗abb∗(a∗abb∗)† is self − adjoint

and

abb∗(a∗abb∗)†a∗abb∗ = (a†)∗(a∗abb∗(a∗abb∗)†a∗abb∗) = (a†)∗a∗abb∗ = abb∗,

(a∗abb∗)†a∗abb∗(a∗abb∗)†a∗ = (a∗abb∗)†a∗,

(a∗abb∗)†a∗abb∗ is self − adjoint.
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By the hypothesis (ab)† = b∗(a∗abb∗)†a∗, we observe that the elements b∗(a∗abb∗)†a∗ab, abb∗(a∗abb∗)†a∗ are self-

adjoint, i.e. b∗(a∗abb∗)† ∈ (a∗ab){4} and (a∗abb∗)†a∗ ∈ (abb∗){3}. Hence, a∗ab, abb∗ ∈ R†, (a∗ab)† = b∗(a∗abb∗)† and

(abb∗)† = (a∗abb∗)†a∗. Then (a∗ab)†a∗ = b∗(a∗abb∗)†a∗(= (ab)†) = b∗(abb∗)†.

(e5)⇒ (a2): In order to prove that a∗abb∗ ∈ R†, we get first that (b†)∗(a∗ab)† ∈ (a∗abb∗){1, 2}, by

a∗abb∗(b†)∗(a∗ab)†a∗abb∗ = (a∗ab(a∗ab)†a∗ab)b∗ = a∗abb∗,

(b†)∗(a∗ab)†a∗abb∗(b†)∗(a∗ab)† = (b†)∗(a∗ab)†a∗ab(a∗ab)† = (b†)∗(a∗ab)†.

The equality a∗abb∗(b†)∗(a∗ab)† = a∗ab(a∗ab)† implies that (b†)∗(a∗ab)† ∈ (a∗abb∗){3}. From the condition

(a∗ab)†a∗ = b∗(abb∗)†, it follows

((b†)∗(a∗ab)†a∗abb∗)∗ = ((b†)∗b∗(abb∗)†abb∗)∗ = (abb∗)†abb∗bb† = (abb∗)†abb∗

implying that (b†)∗(a∗ab)† ∈ (a∗abb∗){4}. Therefore, we have a∗abb∗ ∈ R† and (a∗abb∗)† = (b†)∗(a∗ab)†. This

equality and (e5) give

b∗(a∗abb∗)†a∗ = b∗(b†)∗(a∗ab)†a∗ = b∗(b†)∗b∗(abb∗)† = b∗(abb∗)†. (20)

To complete the proof we will show that (ab)† = b∗(abb∗)†. Notice that, by

abb∗(abb∗)†ab = (abb∗(abb∗)†abb∗)(b†)∗ = abb∗(b†)∗ = ab,

b∗(abb∗)†abb∗(abb∗)† = b∗(abb∗)†,

we get b∗(abb∗)† ∈ (ab){1, 2}. Since abb∗(abb∗)† is self-adjoint, and, by (e5),

b∗(abb∗)†ab = (a∗ab)†a∗ab

is self-adjoint too, we obtain that ab ∈ R† and (ab)† = b∗(abb∗)†. Then, from (20), (ab)† = b∗(a∗abb∗)†a∗(=

b∗(abb∗)† = (a∗ab)†a∗).

(b2)⇒ (e6): To show that (a∗a)†b, (a†)∗bb∗ ∈ R†, let us remark that from

(a∗a)†bb∗[(a∗a)†bb∗]†(a∗a)†b = ((a∗a)†bb∗[(a∗a)†bb∗]†(a∗a)†bb∗)(b†)∗ = (a∗a)†bb∗(b†)∗ = (a∗a)†b,

b∗[(a∗a)†bb∗]†(a∗a)†bb∗[(a∗a)†bb∗]† = b∗[(a∗a)†bb∗]†,

and

(a†)∗bb∗[(a∗a)†bb∗]†a†(a†)∗bb∗ = a(a∗a)†bb∗[(a∗a)†bb∗]†(a∗a)†bb∗ = a(a∗a)†bb∗ = (a†)∗bb∗,

[(a∗a)†bb∗]†a†(a†)∗bb∗[(a∗a)†bb∗]†a† = [(a∗a)†bb∗]†(a∗a)†bb∗[(a∗a)†bb∗]†a† = [(a∗a)†bb∗]†a†,

we get b∗[(a∗a)†bb∗]† ∈ [(a∗a)†b]{1, 2} and [(a∗a)†bb∗]†a† ∈ [(a†)∗bb∗]{1, 2}. Obviously, the elements

(a∗a)†bb∗[(a∗a)†bb∗]† and [(a∗a)†bb∗]†a†(a†)∗bb∗ = [(a∗a)†bb∗]†(a∗a)†bb∗ are self-adjoint. From the hypothesis

[(a†)∗b]† = b∗[(a∗a)†bb∗]†a† we have that b∗[(a∗a)†bb∗]†(a∗a)†b = b∗[(a∗a)†bb∗]†a†(a†)∗b and (a†)∗bb∗[(a∗a)†bb∗]†a†



D. Mosić, N. Č. Dinčić / Filomat 28:9 (2014), 1791–1815 1807

are self-adjoint elements. Thus, (a∗a)†b, (a†)∗bb∗ ∈ R†, [(a∗a)†b]† = b∗[(a∗a)†bb∗]† and [(a†)∗bb∗]† = [(a∗a)†bb∗]†a†.

Now we deduce that [(a∗a)†b]†a† = b∗[(a∗a)†bb∗]†a†(= [(a†)∗b]†) = b∗[(a†)∗bb∗]†.

(e6)⇒ (b2): To prove the condition (a∗a)†bb∗ ∈ R† we observe that (b†)∗[(a∗a)†b]† ∈ [(a∗a)†bb∗]{1, 2, 3} by

(a∗a)†bb∗(b†)∗[(a∗a)†b]†(a∗a)†bb∗ = ((a∗a)†b[(a∗a)†b]†(a∗a)†b)b∗ = (a∗a)†bb∗,

(b†)∗[(a∗a)†b]†(a∗a)†bb∗(b†)∗[(a∗a)†b]† = (b†)∗[(a∗a)†b]†(a∗a)†b[(a∗a)†b]† = (b†)∗[(a∗a)†b]†,

(a∗a)†bb∗(b†)∗[(a∗a)†b]† = (a∗a)†b[(a∗a)†b]† is self − adjoint.

Using the equality [(a∗a)†b]†a† = b∗[(a†)∗bb∗]†, we obtain

((b†)∗[(a∗a)†b]†(a∗a)†bb∗)∗ = ((b†)∗[(a∗a)†b]†a†(a†)∗bb∗)∗ = ((b†)∗b∗[(a†)∗bb∗]†(a†)∗bb∗)∗

= [(a†)∗bb∗]†(a†)∗bb∗bb† = [(a†)∗bb∗]†(a†)∗bb∗,

that is (b†)∗[(a∗a)†b]† ∈ [(a∗a)†bb∗]{4}. So, we get (a∗a)†bb∗ ∈ R† and [(a∗a)†bb∗]† = (b†)∗[(a∗a)†b]†. By this equality

and (e6),

b∗[(a∗a)†bb∗]†a† = b∗(b†)∗[(a∗a)†b]†a† = b∗(b†)∗b∗[(a†)∗bb∗]† = b∗[(a†)∗bb∗]†.

If we show that (a†)∗b ∈ R† and [(a†)∗b]† = b∗[(a†)∗bb∗]†, it follows that [(a†)∗b]† = b∗[(a∗a)†bb∗]†a†. We can see

that b∗[(a†)∗bb∗]† ∈ [(a†)∗b]{1, 2, 3}, by

(a†)∗bb∗[(a†)∗bb∗]†(a†)∗b = ((a†)∗bb∗[(a†)∗bb∗]†(a†)∗bb∗)(b†)∗ = (a†)∗bb∗(b†)∗ = (a†)∗b,

b∗[(a†)∗bb∗]†(a†)∗bb∗[(a†)∗bb∗]† = b∗[(a†)∗bb∗]†,

(a†)∗bb∗[(a†)∗bb∗]† is self − adjoint.

The condition b∗[(a†)∗bb∗]† ∈ [(a†)∗b]{4} holds, because (e6) gives

b∗[(a†)∗bb∗]†(a†)∗b = [(a∗a)†b]†a†(a†)∗b = [(a∗a)†b]†(a∗a)†b is self − adjoint.

Hence, (a†)∗b ∈ R† and [(a†)∗b]† = b∗[(a†)∗bb∗]† = b∗[(a∗a)†bb∗]†a†.

(c2)⇒ (e7): Notice that we have b†[a∗a(bb∗)†]† ∈ [a∗a(b†)∗]{1, 2, 3} and [a∗a(bb∗)†]†a∗ ∈ [a(bb∗)†]{1, 2, 4}, from

a∗a(b†)∗b†[a∗a(bb∗)†]†a∗a(b†)∗ = (a∗a(bb∗)†[a∗a(bb∗)†]†a∗a(bb∗)†)b = a∗a(bb∗)†b = a∗a(b†)∗,

b†[a∗a(bb∗)†]†a∗a(b†)∗b†[a∗a(bb∗)†]† = b†[a∗a(bb∗)†]†a∗a(bb∗)†[a∗a(bb∗)†]† = b†[a∗a(bb∗)†]†,

a∗a(b†)∗b†[a∗a(bb∗)†]† = a∗a(bb∗)†[a∗a(bb∗)†]† is self − adjoint

and

a(bb∗)†[a∗a(bb∗)†]†a∗a(bb∗)† = (a†)∗(a∗a(bb∗)†[a∗a(bb∗)†]†a∗a(bb∗)†) = (a†)∗a∗a(bb∗)† = a(bb∗)†,

[a∗a(bb∗)†]†a∗a(bb∗)†[a∗a(bb∗)†]†a∗ = [a∗a(bb∗)†]†a∗,

[a∗a(bb∗)†]†a∗a(bb∗)† is self − adjoint.
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The assumption [a(b†)∗]† = b†[a∗a(bb∗)†]†a∗ implies that

b†[a∗a(bb∗)†]†a∗a(b†)∗ is self − adjoint

and

a(bb∗)†[a∗a(bb∗)†]†a∗ = a(b†)∗b†[a∗a(bb∗)†]†a∗ is self − adjoint,

i.e. b†[a∗a(bb∗)†]† ∈ [a∗a(b†)∗]{4} and [a∗a(bb∗)†]†a∗ ∈ [a(bb∗)†]{3}. Therefore, we conclude a∗a(b†)∗, a(bb∗)† ∈ R†,

[a∗a(b†)∗]† = b†[a∗a(bb∗)†]† and [a(bb∗)†]† = [a∗a(bb∗)†]†a∗. Now, we have [a∗a(b†)∗]†a∗ = b†[a∗a(bb∗)†]†a∗(=

[a(b†)∗]†) = b†[a(bb∗)†]†.

(e7)⇒ (c2): It is easy to check that [a(bb∗)†]†(a†)∗ ∈ [a∗a(bb∗)†]{1, 2, 4}:

a∗a(bb∗)†[a(bb∗)†]†(a†)∗a∗a(bb∗)† = a∗(a(bb∗)†[a(bb∗)†]†a(bb∗)†) = a∗a(bb∗)†,

[a(bb∗)†]†(a†)∗a∗a(bb∗)†[a(bb∗)†]†(a†)∗ = [a(bb∗)†]†a(bb∗)†[a(bb∗)†]†(a†)∗ = [a(bb∗)†]†(a†)∗,

[a(bb∗)†]†(a†)∗a∗a(bb∗)† = [a(bb∗)†]†a(bb∗)† is self − adjoint.

Using [a∗a(b†)∗]†a∗ = b†[a(bb∗)†]†, we obtain

(a∗a(bb∗)†[a(bb∗)†]†(a†)∗)∗ = (a∗a(b†)∗b†[a(bb∗)†]†(a†)∗)∗ = (a∗a(b†)∗[a∗a(b†)∗]†a∗(a†)∗)∗

= a†aa∗a(b†)∗[a∗a(b†)∗]† = a∗a(b†)∗[a∗a(b†)∗]† is self − adjoint.

Hence, we have a∗a(bb∗)† ∈ R† and [a∗a(bb∗)†]† = [a(bb∗)†]†(a†)∗. Since, by this equality and (e7),

b†[a∗a(bb∗)†]†a∗ = b†[a(bb∗)†]†(a†)∗a∗ = [a∗a(b†)∗]†a∗(a†)∗a∗ = [a∗a(b†)∗]†a∗,

in order to show that a(b†)∗ ∈ R† and [a(b†)∗]† = b†[a∗a(bb∗)†]†a∗, we will prove that [a(b†)∗]† = [a∗a(b†)∗]†a∗.

Indeed, [a∗a(b†)∗]†a∗ ∈ [a(b†)∗]{1, 2, 4} follows from

a(b†)∗[a∗a(b†)∗]†a∗a(b†)∗ = (a†)∗(a∗a(b†)∗[a∗a(b†)∗]†a∗a(b†)∗) = (a†)∗a∗a(b†)∗ = a(b†)∗,

[a∗a(b†)∗]†a∗a(b†)∗[a∗a(b†)∗]†a∗ = [a∗a(b†)∗]†a∗,

[a∗a(b†)∗]†a∗a(b†)∗ is self − adjoint.

By (e7),

a(b†)∗[a∗a(b†)∗]†a∗ = a(b†)∗b†[a(bb∗)†]† = a(bb∗)†[a(bb∗)†]† is self − adjoint.

So, a(b†)∗ ∈ R† and [a(b†)∗]† = [a∗a(b†)∗]†a∗ = b†[a∗a(bb∗)†]†a∗, that is (c2) is satisfied.

(d2)⇒ (e8): First, let us show that (bb∗)†a†, b†(a∗a)† ∈ R†. From

(bb∗)†a†(a†)∗[(bb∗)†(a∗a)†]†(bb∗)†a† = ((bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†)a∗

= (bb∗)†(a∗a)†a∗ = (bb∗)†a†,

(a†)∗[(bb∗)†(a∗a)†]†(bb∗)†a†(a†)∗[(bb∗)†(a∗a)†]† = (a†)∗[(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†

= (a†)∗[(bb∗)†(a∗a)†]†,
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(bb∗)†a†(a†)∗[(bb∗)†(a∗a)†]† = (bb∗)†(a∗a)†[(bb∗)†(a∗a)†]† is self − adjoint,

we deduce that (a†)∗[(bb∗)†(a∗a)†]† ∈ [(bb∗)†a†]{1, 2, 3}. The statement [(bb∗)†(a∗a)†]†(b†)∗ ∈ [b†(a∗a)†]{1, 2, 4} is a

simple consequence of the equalities

b†(a∗a)†[(bb∗)†(a∗a)†]†(b†)∗b†(a∗a)† = b∗((bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†)

= b∗(bb∗)†(a∗a)† = b†(a∗a)†,

[(bb∗)†(a∗a)†]†(b†)∗b†(a∗a)†[(bb∗)†(a∗a)†]†(b†)∗ = [(bb∗)†(a∗a)†]†(bb∗)†(a∗a)†[(bb∗)†(a∗a)†]†(b†)∗

= [(bb∗)†(a∗a)†]†(b†)∗,

[(bb∗)†(a∗a)†]†(b†)∗b†(a∗a)† = [(bb∗)†(a∗a)†]†(bb∗)†(a∗a)† is self − adjoint.

The hypothesis (b†a†)† = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗ gives that the elements

(a†)∗[(bb∗)†(a∗a)†]†(bb∗)†a† = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗b†a†

and

b†(a∗a)†[(bb∗)†(a∗a)†]†(b†)∗ = b†a†(a†)∗[(bb∗)†(a∗a)†]†(b†)∗

are self-adjoint, i.e. we obtain that (a†)∗[(bb∗)†(a∗a)†]† ∈ [(bb∗)†a†]{4} and [(bb∗)†(a∗a)†]†(b†)∗ ∈ [b†(a∗a)†]{3}.

Consequently, (bb∗)†a†, b†(a∗a)† ∈ R†, [(bb∗)†a†]† = (a†)∗[(bb∗)†(a∗a)†]† and [b†(a∗a)†]† = [(bb∗)†(a∗a)†]†(b†)∗. Then

[(bb∗)†a†]†(b†)∗ = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗(= (b†a†)†) = (a†)∗[b†(a∗a)†]† (21)

and, by Theorem 1.1, (a†)∗(bb∗)† = [(bb∗)†a†]∗, (a∗a)†(b†)∗ = [b†(a∗a)†]∗ ∈ R†. Applying involution to (21), we

have b†[(a†)∗(bb∗)†]† = [(a∗a)†(b†)∗]†a† and the condition (e8) holds.

(e8)⇒ (d2): By the elementary computations, we get

(bb∗)†(a∗a)†a∗[(bb∗)†a†]†(bb∗)†(a∗a)† = ((bb∗)†a†[(bb∗)†a†]†(bb∗)†a†)(a†)∗

= (bb∗)†a†(a†)∗ = (bb∗)†(a∗a)†,

a∗[(bb∗)†a†]†(bb∗)†(a∗a)†a∗[(bb∗)†a†]† = a∗[(bb∗)†a†]†(bb∗)†a†[(bb∗)†a†]†

= a∗[(bb∗)†a†]†,

(bb∗)†(a∗a)†a∗[(bb∗)†a†]† = (bb∗)†a†[(bb∗)†a†]† is self − adjoint,

which yield a∗[(bb∗)†a†]† ∈ [(bb∗)†(a∗a)†]{1, 2, 3}. Applying involution to the condition b†[(a†)∗(bb∗)†]† =

[(a∗a)†(b†)∗]†a†, we obtain

[(bb∗)†a†]†(b†)∗ = (a†)∗[b†(a∗a)†]† (22)
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and

(a∗[(bb∗)†a†]†(bb∗)†(a∗a)†)∗ = (a∗[(bb∗)†a†]†(b†)∗b†(a∗a)†)∗

= (a∗(a†)∗[b†(a∗a)†]†b†(a∗a)†)∗

= [b†(a∗a)†]†b†(a∗a)†a†a

= [b†(a∗a)†]†b†a†(a†)∗a†a

= [b†(a∗a)†]†b†a†(a†)∗

= [b†(a∗a)†]†b†(a∗a)† is self − adjoint.

Thus, (bb∗)†(a∗a)† ∈ R† and [(bb∗)†(a∗a)†]† = a∗[(bb∗)†a†]†. This equality and (22) give that

(a†)∗[(bb∗)†(a∗a)†]†(b†)∗ = (a†)∗a∗[(bb∗)†a†]†(b†)∗ = aa†(a†)∗[b†(a∗a)†]†

= (a†)∗[b†(a∗a)†]†.

Now, to prove (b†a†)† = (a†)∗[(bb∗)†(a∗a)†]†(b†)∗ it is enough to check that (b†a†)† = (a†)∗[b†(a∗a)†]†. We show

that (a†)∗[b†(a∗a)†]† ∈ (b†a†){1, 2, 3} by

b†a†(a†)∗[b†(a∗a)†]†b†a† = (b†(a∗a)†[b†(a∗a)†]†b†(a∗a)†)a∗

= b†(a∗a)†a∗ = b†a†,

(a†)∗[b†(a∗a)†]†b†a†(a†)∗[b†(a∗a)†]† = (a†)∗[b†(a∗a)†]†b†(a∗a)†[b†(a∗a)†]†

= (a†)∗[b†(a∗a)†]†,

b†a†(a†)∗[b†(a∗a)†]† = b†(a∗a)†[b†(a∗a)†]† is self − adjoint.

From (22),

(a†)∗[b†(a∗a)†]†b†a† = [(bb∗)†a†]†(b†)∗b†a† = [(bb∗)†a†]†(bb∗)†a†,

that is (a†)∗[b†(a∗a)†]† ∈ (b†a†){4}. So, we obtain that b†a† ∈ R† and (b†a†)† = (a†)∗[b†(a∗a)†]† =

(a†)∗[(bb∗)†(a∗a)†]†(b†)∗.

(a2)⇒ (e9): From

aa∗abb∗bb†(a∗abb∗)†a†aa∗abb∗b = a(a∗abb∗(a∗abb∗)†a∗abb∗)b = aa∗abb∗b,

b†(a∗abb∗)†a†aa∗abb∗bb†(a∗abb∗)†a† = b†(a∗abb∗)†a∗abb∗(a∗abb∗)†a† = b†(a∗abb∗)†a†,

we conclude that b†(a∗abb∗)†a† ∈ (aa∗abb∗b){1, 2}. By the equality

(aa∗abb∗bb†(a∗abb∗)†a†)∗ = (aa∗abb∗(a∗abb∗)†a†)∗ = (a†)∗a∗abb∗(a∗abb∗)†a∗ = abb∗(a∗abb∗)†a∗,

(b†(a∗abb∗)†a†aa∗abb∗b)∗ = (b†(a∗abb∗)†a∗abb∗b)∗ = b∗(a∗abb∗)†a∗abb∗(b†)∗ = b∗(a∗abb∗)†a∗ab

and the assumption (ab)† = b∗(a∗abb∗)†a∗, we observe that b†(a∗abb∗)†a† ∈ (aa∗abb∗b){3, 4}. Hence, aa∗abb∗b ∈ R†

and (aa∗abb∗b)† = b†(a∗abb∗)†a†.
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(e9)⇒ (a2): We can get that b∗(a∗abb∗)†a∗ ∈ (ab){1, 2} in the following way

abb∗(a∗abb∗)†a∗ab = (a†)∗(a∗abb∗(a∗abb∗)†a∗abb∗)(b†)∗ = (a†)∗a∗abb∗(b†)∗ = ab,

b∗(a∗abb∗)†a∗abb∗(a∗abb∗)†a∗ = b∗(a∗abb∗)†a∗.

From the hypothesis (aa∗abb∗b)† = b†(a∗abb∗)†a† we obtain

(abb∗(a∗abb∗)†a∗)∗ = ((a†)∗a∗abb∗(a∗abb∗)†a∗)∗ = aa∗abb∗(a∗abb∗)†a†

= aa∗abb∗bb†(a∗abb∗)†a† is self − adjoint

and

(b∗(a∗abb∗)†a∗ab)∗ = (b∗(a∗abb∗)†a∗abb∗(b†)∗)∗ = b†(a∗abb∗)†a∗abb∗b

= b†(a∗abb∗)†a†aa∗abb∗b is self − adjoint.

Thus, ab ∈ R† and (ab)† = b∗(a∗abb∗)†a∗, i.e. the statements (a2) is satisfied.

(f1)⇒ (f2): First, we will prove that a†abb∗ ∈ R†. From

a†abb∗(b†)∗b†(a†abb†)†a†abb∗ = (a†abb†(a†abb†)†a†abb†)bb∗ = a†abb†bb∗ = a†abb∗,

(b†)∗b†(a†abb†)†a†abb∗(b†)∗b†(a†abb†)† = (b†)∗b†(a†abb†)†a†abb†(a†abb†)† = (b†)∗b†(a†abb†)†,

a†abb∗(b†)∗b†(a†abb†)† = a†abb†(a†abb†)†,

we have that (b†)∗b†(a†abb†)† ∈ (a†abb∗){1, 2, 3}. Using the assumption (a†ab)† = b†(a†abb†)†, we get

b†(a†abb†)†a†ab is self-adjoint and

(b†)∗b†(a†abb†)†a†abb∗ = (bb†(a†abb†)†a†abb†)∗ = (a†abb†)†a†abb†bb†

= (a†abb†)†a†abb† is self − adjoint.

Therefore, a†abb∗ ∈ R† and (a†abb∗)† = (b†)∗b†(a†abb†)†. By this equality and (f1) we obtain

(a†ab)† = b†(a†abb†)† = b∗(b†)∗b†(a†abb†)† = b∗(a†abb∗)†.

In the same way from the equalities

a∗abb†(a†abb†)†a†(a†)∗a∗abb† = a∗a(a†abb†(a†abb†)†a†abb†) = a∗aa†abb† = a∗abb†,

(a†abb†)†a†(a†)∗a∗abb†(a†abb†)†a†(a†)∗ = (a†abb†)†a†abb†(a†abb†)†a†(a†)∗ = (a†abb†)†a†(a†)∗,

(a†abb†)†a†(a†)∗a∗abb† = (a†abb†)†a†abb†,

we deduce (a†abb†)†a†(a†)∗ ∈ (a∗abb†){1, 2, 4}. The hypothesis (abb†)† = (a†abb†)†a† implies that abb†(a†abb†)†a†

is self-adjoint and then

a∗abb†(a†abb†)†a†(a†)∗ = (a†abb†(a†abb†)†a†a)∗ = a†aa†abb†(a†abb†)†

= a†abb†(a†abb†)† is self − adjoint.
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Thus, we get that a∗abb† ∈ R†, (a∗abb†)† = (a†abb†)†a†(a†)∗ and, by (f1),

(abb†)† = (a†abb†)†a† = (a†abb†)†a†(a†)∗a∗ = (a∗abb†)†a∗.

So, the condition (f2) is satisfied.

(f2)⇒ (f1): Since

a†abb†bb∗(a†abb∗)†a†abb† = (a†abb∗(a†abb∗)†a†abb∗)(b†)∗b† = a†abb∗(b†)∗b† = a†abb†,

bb∗(a†abb∗)†a†abb†bb∗(a†abb∗)† = bb∗(a†abb∗)†a†abb∗(a†abb∗)† = bb∗(a†abb∗)†,

a†abb†bb∗(a†abb∗)† = a†abb∗(a†abb∗)† is self − adjoint,

we conclude that bb∗(a†abb∗)† ∈ (a†abb†){1, 2, 3}. By the equality (a†ab)† = b∗(a†abb∗)†, we have that

b∗(a†abb∗)†a†ab is self-adjoint and then

bb∗(a†abb∗)†a†abb† = ((b†)∗b∗(a†abb∗)†a†abb∗)∗ = (a†abb∗)†a†abb∗bb†

= (a†abb∗)†a†abb∗ is self − adjoint.

Hence, a†abb† ∈ R† and (a†abb†)† = bb∗(a†abb∗)†. Now, by (f2) and the last equality,

(a†ab)† = b∗(a†abb∗)† = b†bb∗(a†abb∗)† = b†(a†abb†)†.

Similarly, from the equalities

a†abb†(a∗abb†)†a∗aa†abb† = a†(a†)∗(a∗abb†(a∗abb†)†a∗abb†) = a†(a†)∗a∗abb† = a†abb†,

(a∗abb†)†a∗aa†abb†(a∗abb†)†a∗a = (a∗abb†)†a∗abb†(a∗abb†)†a∗a = (a∗abb†)†a∗a

(a∗abb†)†a∗aa†abb† = (a∗abb†)†a∗abb† is self − adjoint,

we obtain that (a∗abb†)†a∗a ∈ (a†abb†){1, 2, 4}. Using the condition (abb†)† = (a∗abb†)†a∗, the element

abb†(a∗abb†)†a∗ is self-adjoint and now

a†abb†(a∗abb†)†a∗a = (a∗abb†(a∗abb†)†a∗(a†)∗)∗ = a†aa∗abb†(a∗abb†)†

= a∗abb†(a∗abb†)† is self − adjoint.

Therefore, we show that (a†abb†)† = (a∗abb†)†a∗a and then we get, by (f2),

(abb†)† = (a∗abb†)†a∗ = (a∗abb†)†a∗aa† = (a†abb†)†a†.

Thus, the condition (f1) holds.
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3. Reverse Order Law in C∗-algebras

Now, we consider some additional equivalent conditions for the reverse order law (ab)† = b†(a†abb†)†a†

for elements of C∗–algebras. First, we have the following result.

Lemma 3.1. LetA be a unital C∗–algebra and let a, b ∈ A−. Then the following statements are equivalent:

(1) ab ∈ A−;

(2) a†abb† ∈ A−;

(3) (1 − bb†)(1 − a†a)A−;

(4) (a†)∗b ∈ A−;

(5) a(b†)∗ ∈ A−;

(7) b†a† ∈ A−;

(8) (1 − a†a)(1 − bb†) ∈ A−;

(9) a†ab ∈ A−;

(10) abb† ∈ A−.

Proof. Using Theorem 1.1, Theorem 1.2 and Lemma 1.3, we can easy get these equivalences. Notice that

the condition a†abb† ∈ A− implies bb†a†a = (a†abb†)∗ ∈ A−. Since a†a, bb† ∈ P(A), then, by Lemma 1.3, the

condition a†abb† ∈ A† is equivalent to (1 − bb†)(1 − a†a) ∈ A†, that is a†abb† ∈ A− ⇔ (1 − bb†)(1 − a†a) ∈ A−.

Theorem 3.2. LetA be a unital C∗–algebra and let a, b, ab ∈ A−. Then the following statements are equivalent:

(a1) (ab)† = b†(a†abb†)†a†;

(a3) (ab)† = b†a† − b†[(1 − bb†)(1 − a†a)]†a†;

(b3) [(a†)∗b]† = b†a∗ − b†[(1 − bb†)(1 − a†a)]†a∗;

(c3) [a(b†)∗]† = b∗a† − b∗[(1 − bb†)(1 − a†a)]†a†;

(d3) (b†a†)† = ab − a[(1 − a†a)(1 − bb†)]†b;

(f3) (a†ab)† = b†a†a − b†[(1 − bb†)(1 − a†a)]†a†a and (abb†)† = bb†a† − bb†[(1 − bb†)(1 − a†a)]†a†.
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Proof. By Lemma 2.1, the hypothesis ab ∈ A− implies regularity of suitable elements. Let (b1), (c1) ,

(d1), (f1) be conditions from Theorem 2.1. The equivalences (a1)⇔ (b1)⇔ (c1)⇔ (d1)⇔ (f1) follow from

Theorem 2.1.

(a1)⇔ (a3): Since a†a, bb† ∈ P(A), then, by Theorem 1.4, we obtain the formula

(a†abb†)† = bb†a†a − bb†[(1 − bb†)(1 − a†a)]†a†a, (23)

which gives the equality

b†(a†abb†)†a† = b†(bb†a†a − bb†[(1 − bb†)(1 − a†a)]†a†a)a†

= b†a† − b†[(1 − bb†)(1 − a†a)]†a† (24)

Now, we deduce that (ab)† = b†(a†abb†)†a† if and only if (ab)† = b†a† − b†[(1− bb†)(1− a†a)]†a†. Therefore, the

statement (a1) is equivalent to (a3).

(b1)⇔ (b3): Multiplying the equality (24) by aa∗ from the right side, we get

b†(a†abb†)†a∗ = b†a∗ − b†[(1 − bb†)(1 − a†a)]†a∗.

So, [(a†)∗b]† = b†(a†abb†)†a∗ and [(a†)∗b]† = b†a∗ − b†[(1 − bb†)(1 − a†a)]†a∗ are equivalent, that is (b1)⇔ (b3).

(c1)⇔ (c3): Multiplying the equality (24) by b∗b from the left side, we have

b∗(a†abb†)†a† = b∗a† − b∗[(1 − bb†)(1 − a†a)]†a†

which yields this equivalence.

(d1)⇔ (d3): Using Theorem 1.4, we observe that

(bb†a†a)† = a†abb† − a†a[(1 − a†a)(1 − bb†)]†bb†.

Multiplying this equality by a from the left side and by b from the right side we get

a(bb†a†a)†b = ab − a[(1 − a†a)(1 − bb†)]†b.

The equivalence (d1)⇔ (d3) easy follows.

(f1)⇔ (f3): Multiplying the equality (23) first by b† from the left side, we have

b†(a†abb†)† = b†a†a − b†[(1 − bb†)(1 − a†a)]†a†a,

and then by a† from the right side, we obtain

(a†abb†)†a† = bb†a† − bb†[(1 − bb†)(1 − a†a)]†a†.

Now, this part of proof easy follows.

As a consequence of Theorem 1.5 and Theorem 2.1 we get the following result.
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Corollary 3.3. Let R be a ring with involution and let a, b ∈ R†. Then the following statements are equivalent:

(a1) ab, a†abb† ∈ R† and (ab)† = b†(a†abb†)†a†;

(e1) ab, a†ab, abb† ∈ R† and (ab)† = (a†ab)†a† = b†(abb†)†;

(e2) (a†)∗b, a†ab, (a†)∗bb† ∈ R† and [(a†)∗b]† = (a†ab)†a∗ = b†[(a†)∗bb†]†;

(e3) a(b†)∗, a†a(b†)∗, abb† ∈ R† and [a(b†)∗]† = [a†a(b†)∗]†a† = b∗(abb†)†;

(e4) b†a†, bb†a†, b†a†a ∈ R† and (b†a†)† = (bb†a†)†b = a(b†a†a)†;

(e5) ab, a∗ab, abb∗ ∈ R† and (ab)† = (a∗ab)†a∗ = b∗(abb∗)†;

(e6) (a†)∗b, (a∗a)†b, (a†)∗bb∗ ∈ R† and [(a†)∗b]† = [(a∗a)†b]†a† = b∗[(a†)∗bb∗]†;

(e7) a(b†)∗, a∗a(b†)∗, a(bb∗)† ∈ R† and [a(b†)∗]† = [a∗a(b†)∗]†a∗ = b†[a(bb∗)†]†;

(e8) (b†a†)∗, (a†)∗(bb∗)†, (a∗a)†(b†)∗ ∈ R† and [(b†a†)†]∗ = b†[(a†)∗(bb∗)†]† = [(a∗a)†(b†)∗]†a†.
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