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Slavko Simié®, Matti Vuorinen®

“Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
YDepartment of Mathematics and Statistics, University of Turku, 20014 Turku, Finland

Abstract. We give a study of the Lipschitz continuity of Mébius transformations of a punctured ball onto
another punctured ball in R” with respect to the distance ratio metric. Some subtle methods are developed,
helping to determine the best possible j-Lip constant in this case.

1. Introduction and Main Result

During the past thirty years the theory of quasiconformal maps has been studied in various contexts
such as in Euclidean, Banach, or even metric spaces. It has turned out that while some classical tools
based on conformal invariants, real analysis and measure theory are no longer useful beyond the Euclidean
context, the notion of a metric space and related notions still provide a useful conceptual framework. This
has led to the study of the geometry defined by various metrics and to the key role of metrics in recent
theory of quasiconformality; see e.g. [4, 7-9, 11, 12, 14]. One of these metrics is the distance ratio metric.

Distance ratio metric. For a proper subdomain G of R" and for x,y € G the distance ratio metric jg is
defined by

lx =yl
min{dg(x), dc(y)} )’

where dg(x) denotes the Euclidean distance from x to the boundary JdG of the domain G. If G; € Gis a
proper subdomain then for x, y € G; clearly

jo(x,y) =log|1 + (1.1)

Jo, y) < jo (%, y)- (1.2)

Moreover, the numerical value of the metric is highly sensitive to boundary variation, the left and right
sides of (1.2) are not comparable even if G; = G\ {p},p € G, since then

x —yl
min{d(x, dG), d(y, dG),d(x, p),d(y, p)} ]
(From the above formula it is easy to see that j-metric depends on the boundary of the domain highly. The

aim of this article is to discuss the case more thoroughly and to solve a hypothesis from [13] concerning this
matter.

jovp(x, y) = log |1+
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The distance ratio metric was initially introduced by EW. Gehring and B.P. Palka [6] and in the above
simplified form by M. Vuorinen [15]. This metric is frequently used in the study of hyperbolic type metrics
and geometric theory of functions. It is a basic fact that the above j-metric is closely related to the hyperbolic
metric both for the unit ball B” and for the Poincaré half-space H" [16].

Quasi-invariance of j;. Given domains G, G’ C IR” and an open continuous mapping f : G — G’ with
fG c G’ we consider the following condition: there exists a constant C > 1 such that for all x, y € G we have

jG’(f(x)/ f(y)) < CjG(x/ y)/ (13)
or, equivalently, that the mapping
f:(Gje) = (G je)
between metric spaces is Lipschitz continuous with the Lipschitz constant C.

Determination of the best possible Lipschitz constants in this sense, which is the aim of this article, is
characterized by a series of very subtle inequalities of various kinds and thus intriguing to study.

Moébius transformation. The characterization of Mébius transformation on the unit ball is given by the
following assertion.

Lemma 1.1. [3, Theorem 3.5.1, p.40]. Let f be a Mobius transformation and f(B") = B". Then
flx) = (0x)4,

where o is an inversion in some sphere orthogonal to S"™' and A is an orthogonal matrix.

In the sequel we shall denote a* = {7z for a € R" \ {0}, and 0" = oo, co" = 0. A sphere centered at a point
a € R" and with the radius r > 0 is denoted by 5"~!(a, r) . For a given pointa € B" \ {0}, let

o.(X)=a" +s*(x—a’), s> =|a[ 2 -1 (1.4)
be an inversion in the sphere S"~!(a*, s) orthogonal to S"~!. Then 0,(a) = 0, ,(0) = 4, 0,(a*) = o and

s?x -yl

loa(x) — Oa(y)l = | (1.5)

x—ally —a]
Since j-metric is invariant under orthogonal transformations, by Lemma 1.1, for x, y,a € B", we have

j]B” (f(X), f(y)) = jIB” (Gﬂ(x)/ Gﬂ(y))/

where 0,(x) is defined as above.

The hyperbolic metric in the unit ball or the half space is Mobius invariant. However, the distance ratio
metric g is not invariant under Mobius transformations. Therefore, it is natural to ask what is the Lipschitz
constant for this metric under conformal mappings or Mobius transformations in higher dimension. F. W.
Gehring and B.G. Osgood proved that this metric is not changed by more than a factor 2 under Mobius
transformations, see [5, proof of Theorem 4]:

Theorem 1.2. If D and D’ are proper subdomains of R" and if f is a Mobius transformation of D onto D', then for
allx,yeD

3o, 4) < o (), F4) < 2jn( )

On the other hand, the next theorem from [13], conjectured in [10], yields a sharp form of Theorem 1.2
for Mobius automorphisms of the unit ball.
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Theorem 1.3. A Mobius transformation f : B" — B" = f(B"), f(0) =a € B", satisfies

T (f(x), f()) < (L + lal) jie» (x, y)
forall x,y € B". The constant 1 + |a| is best possible.

A similar result for a punctured disk was conjectured in [13]. The next theorem, our main result, settles
this conjecture in the affirmative and gives its generalization in higher dimension.

Main Theorem. Leta € B" and h : B" — B" = h(B") be a Mébius transformation with h(0) = a. Then
h(B" \ {0}) = B"\ {a} and for x, y € B" \ {0}

JBna) (h(x), h(y)) < C(@)jBr (o) (X, ),

2+]a|

where the constant C(a) = 1 + (log 7=7)/ log 3 is best possible.

Clearly the constant C(a) < 1 + |a| < 2 for all a € B" and hence the constant C(a) is smaller than the
constant 1 + [f(0)| in Theorem 1.3 and far smaller than the constant 2 in Theorem 1.2.

If a = 0 then / is a rotation of the unit ball and hence an Euclidean isometry. Note that C(0) = 1, i.e. the
result is sharp in this case. For points other than zero, the sharpness is discussed at the end of the proof of
the main theorem.

The proof is based on Theorem 2.1 below and on Lemma 2.3, a monotone form of 1'Hopital’s rule from
[1, Theorem 1.25].

2. Preliminary Results

In view of the definition of the distance ratio metric it is natural to expect that some properties of the
logarithm will be needed. In the earlier paper [13], the classical Bernoulli inequality [16, (3.6)] was applied
for this purpose. Apparently now some stronger inequalities are needed and we use the following result,
which is precise for the case 1 < C < 2 and allows us to get rid of logarithms in further calculations.

Theorem 2.1. Let D and D’ be proper subdomains of R". For an open continuous mapping f : D — D’ denote

fewl  -wl  minldy(F), do(F@))
YEYEW S T ) mintdo@), do(@)]

X=Xz w):= minf{dp(z), dp(w)}’

If there exists a number q, 0 < q <1, such that

Y-1
X+17

g<Y+ (2.1)

then the inequality
. 2 .
jor(f(2), f(w)) < EJD(Z/ w),

holds for all z,w € D.

Proof. The proof is based on the following assertion.

Lemma 2.2. Fora > 0,4 € [0, 1], we have
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Proof. Denote

qg+eé 1-g
fla,q) 5=108(1+qea)—mﬂ-

By differentiation with respect to the parameter 2, we have

(1-q (-17
1+g9 (1+ge")(g+e?)

fa(‘Z/Q) = _q

Therefore we conclude that

f(a,q) < f(0,q9)=0.

|
Returning to the proof of Theorem 2.1, observe that
_ |z — w| _ ) B
= mindp@), dowy] O PUPEON L
and
__—wl  minldp(f(z),do(f@)} _ _ exp(jp(zw)) -1
If(z) = f()|  min{dp(z), dp(w)} exp(jp (f(2), f(w))) - 1°
Hence the condition (2.1) is equivalent to
. ) + ejD(er)
exp(jo (@), f@)) < explioz )] e )
Therefore, by Lemma 2.2, we get
‘ ‘ q+ ejD(z,w)
jo (F@), fw)) < jo(z,w) + log(m
< jp(z, w) + 4, (z w)zi' (z,w)
< Ip\%, 1+q]D/ 1+q]D/ .
|

In the sequel we shall need the so-called monotone form of I’'Hopital’s rule.

Lemma 2.3. [1, Theorem 1.25]. For —oo < a < b < oo, let f, g : [a,b] = R be continuous on [a,b], and be
differentiable on (a, b), and let g’(x) # 0 on (a, b). If f'(x)/g’(x) is increasing(deceasing) on (a, b), then so are

fW-f@ - £

g0 -g@ " g —g0)

If f(x)/ g’ (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.3 has found numerous applications recently. See the bibliography of [2] for a long list of
applications to inequalities.
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Lemma 2.4. For positive numbers A,B,D and 0 < C < 1,0 > 0, we have
1. The inequality

B D B B B
1+56(1+ 1+A)(1+ 1_C6)s(1+—6)(1+—6),

holds if and only if BO < A + C;

2. The function
log(1 + %9)
log(1 + %9)

is monotone increasing (decreasing) in 6 if C+ D <1 (C+ D > 1).

Proof. Proof of the first part follows by direct calculation.
For the second part, set

B B
£10) = 10g (14 7220), 0 = 0; /20) = log 1+ 50). £0) =0,

Since
fi®)  D+BO _ ., C+D-1
f;6) 1-C+B8 ~ 1-C+Bo’
the proof follows according to Lemma 2.3. O

Now, we prove our main result.

Proof of the Main Theorem. For the proof, without loss of generality we may assume that hi(z) = 0,(z)
and suppose in the sequel that |z| > |[w]. Let G = B" \ {0} and G’ = B" \ {a}. Then

ol w) = E-ul gt s BT
jo(z,w) = log(1 + ey TN |w|}) = log(l + il = Izl})'
" |0a(2) — 0a(w)]
i 04(2) — 0g(w
jer (0a(2), 0a(w)) = log(l + f)’
where

T = T,(z, w) := min{lo,(z) — al, lo,(w) — al, 1 — |04(2)I, 1 = loa(w)l}.

In concert with the definition of the number T, the proof is divided into four cases. We shall consider
each case separately applying Bernoulli inequality in the first case, its stronger form from Theorem 2.1 in
the second one and a direct approach in the last two cases.

1. T =lo,(z) —al.
Since 2
s°z|
— = — 0 =
|0‘u(z) al |Gu(z) Ga( )I |a*||z _ a*l
and 2
_ slz—w]
|0a(z) oa(w)l - Iz — a*||w — a*| ’
we have

|z — wl )

o (0@, ) = log(1 + Lomm =)
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Suppose firstly that [w| < 1 — |z|. Since also |w| <1 —|z| < 1 — |w|, we conclude that 0 < |w| < 1/2. Hence, by
the Bernoulli inequality (see e.g. [16, (3.6)]), we get

jG'(Ua(Z)/ Ga(w)) < lOg(l + ﬂ) < log(l + |z — w| )

l2I(1 - lallwl) lwl(1 - 4
1 lz—wl|\ .
< W log(l + ol )— . M]G(Z’w)'
2 2
Suppose now 1 — |z| < [w|(< |z]). Then 1/2 < |z] < 1.
Since in this case (|z| — %)(2 — lal(1 + |z])) = 0, we easily obtain that
1 1
< o .
IZI(1 = lallzl) = (1 - 4y - |2))
Hence,
. |z — w| |z — w
(04(2),0,(w)) <logll + ———— ) <log{l + ————
e (0a(2, 0n() <1og(1+ =) < log(1+ g iy)

|z —w| 1 |z — w| 1 .
<log(1+ < log(1 + = ——js(z, w).
d a—%m-uw - s+ 7o) —a/e

2. T =lo,(w) —al.

This case can be treated by means of Theorem 2.1 with the same resulting constant Cy(a) = 5 —Zlal‘
Indeed, in terms of Theorem 2.1, we consider firstly the case [w| < 1 — |z|.

We get
il N e L P
lw] [w] lw]
and
y=P20 s =y
la|
Therefore,
Y-1 1-Y
>Y — =1- >1- =q.
Y+X+1_Y Trx 1—-lal(lwl+|zl) >1—lal =¢q

In the second case, i.e. when 1 — |z] < |w|, we want to show that

Y +

Y-1
>1—
X+121 70
which is equivalent to
Y-Q0-la)A+X)+Y>1.
Since in this case
_lz-wl
1—z| = 1-1|z ~

*

X

and
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ool

- Izl

1—lallz| _ .

_ lwlz—a
2 (1= lallzh) .

Tl <

=1 —lallzl + (fw] + [z = 1)

we get

(Y = (1 —=la)d +X)+Y—1 >Y'-1-la)A+X)+Y -1
IaIIZI]

|zl

1 - lal|z|

IWI
- + +z| -1
allz] + (el + 121 )1_|Z|

= (i1 ~ 12D + (o + kel = 1)~ —

Ial

IaIIZI

2 |al(1 — fw] = |z[) + (jw] + 2] - )

= (lw] + |z - 1)
Therefore by Theorem 2.1, in both cases we get

o 0u(2), u(w) £ T fole, ) = 3o ) = Ci@jote, ).

3. T=1-]0,(2)l

In this case, applying well-known assertions (e.g. [13, Lemma 3.2], [16, Exercise 2.52(2)])

la| + |z|
1+ |allzl”

aflz —a'? = lz —al* = 1 - )1 - 27); loa(2)| <
and
lallw — a*| > 1 = |allw|(= 1 — |allz]),
we get

. ~ |04(2) — 0,(w)|
Jer(04(2), 0a(w)) = log(l * Tu(z)l)

lals?|z — w| ) _
lw — a*((lallz — a*| = |z — a)

( |z — wl(lallz — a*| + |z — al))
lallw — a*|(1 - |zI?)

|z —al )
1+
( |al|z — a*| )
|z —w ( |z —w| ) la| + |z])
<
< 10g<1 + 112 1+ R 1+ T+ izl
|z — w| ( lallz — wl )( lal(1 - IZI))
<log(1 + 1+ 1+ .
81+ T (U T Y )

Applying here Lemma 2.4, part 1., with

= 10g<1 +

lz—w| |z—a*
=log(1
og( TToRE |w

—a*

~—

A =lallzl, B =lal, C = lallw], D = lal(1 - |z[), 6 = |z —wl,

we obtain

o (0u(2),oute) < log| (1 + E= (1 4 HEZEL) 22)

Izl 1 — lalfw]
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Suppose that 1 —|z| < |w| (< |z]). By Lemma 2.4, part 2., with
B =lal, C=lallzl, D = lal(1 - Iz[), 0 = |z —w|,

we get
Iallz—wl)

_ Jo(0u@), a@)) . log(1 + T

J(z, w;a) := ic@w) log(1 + &)

2)a
log(1 + 1J|;'ﬁ;|)
1+

T log(1+ Ly’

because in this case we have C+ D = |g| < 1 and |z — w| < 2|z|.

Since the last function is monotonically decreasing in |z| and |z| > 1/2, we obtain

1+3a
log(;317)

J(z,w;a) <1+ =1+ (log it—:z:)/ log 3 := Cy(a).

IOg(i—g)

Let us now consider [w| < 1 — |z|(£ 1 — |w|). The estimate (2.2) and Lemma 2.4, part 2., with

B=lal, C=D = lallw|, 6 = |z —wl|,

yield
o< BN 5] )
log(l + W) log(l + W)
log(1+ ) log(1+ i)
=1+ < ,
log(l + 'Zl;fl”l) log(l + |zl—0|)

sinceC+D =2a|lw| <|a|<1land 0 < |z —w| < |z| + |w| < 1.

Denote the last function as g(|w|) and let |w| =, 0 < ¥ < 1/2. Since

laf? . 103(1 + 1—|7L|r) g
(L =rlaD@ + (1 =nlaDlog(L +1/r) = (1 +r)log’(1 + 1/r)

it follows that g(r) is a monotonically increasing function and we finally obtain

g =

log(l + 1—||‘Zz||/2)

J(z,w;a) <1+ Tog( +2)

= Cz({)l).

4. T=1-|o,(w).

This case can be treated analogously with the previous one. Now,

2|, _ — . —
Pl Ly ol e+ o),

o (on@ o) = log{1+ &= o o= ol — (1 ~ o)
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Iz - wl ( lallz - wl) lal(1 — feol)
<log(1 :
< log( PRl U T )\ T el )

Applying Lemma 2.4, part 1., with

= lallwl, B = lal, C = lallzl, D = lal(1 - [wl]), 6 = |z — wl,

we obtain

| lallz — wl
o (0a(2), 0a(w)) < 1og[(1 + |w|)(1 + f-sz.;)]' 2.3)

Suppose that 1 — |z| < [w|(< |z]). We get

jo a2, au(w) _ o1+ =55)(1 + 155

e ogl1 + )

J(z,w;a) =

lallz—w]| )
1—allz|

log(1 +

1og(l + llez)l‘ )

and this inequality is already considered above.

In the case |w| <1 -|z| £ 1 - |w|, we have

log (1 + 1555)(1 + 550)] _ 1og] (1 + )1 + i)

J(z,w;a) < <
log(l + 'lefl) log(l + lzle’l)
log(1 + iy log(1 + 1=y
=1+ <
log(1 + E=21) log(1+ )

where the last inequality follows from Lemma 2.4, part 2., with
= lal, C = lal(1 = wl), D = lallwl, 6 = |z - wl,

sinceC+D =l <land|z—w| <|z| +|w| < 1.
Denote now |w| = r and let k(r) = k1(r)/ka(r) with

h) =1og(1+ ) ) = log(1+3),

1-|al(1-7

We shall show now that the function k(r) is monotonically increasing on the positive part of real axis.
Indeed, since ki(c0) = kp(co0) = 0 and

lal2r(1 + 7) a1 +7) |a|r
(1 + |alr)(1 — |a| + |alr) T 1+alr 1-al + lalr

1—|11|)( 1—|al )
=(1- 1-
( 1+ |alr 1—|a| + |alr/’

with both functions in parenthesis evidently increasing on R*, the conclusion follows from Lemma 2.3.
Since in this case 0 < r < 1/2, we also obtain that

ki (n)/ky(r) =
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1 la]
J(z,w;a) <1+ M = Cy(a).
log(l + 2)

To verify that the constant C(a) is sharp, we firstly calculate Ta(ﬁ, ﬁl) = ;—IZI

Then, it follows that

(50 37) = C2(0).

=, =4
2|al” 2|al

2+|a|
2—|a

Because C»(a) = 1 + (log 5)/ log 3 > 1_—1%‘ = C1(a), we conclude that the best possible upper bound C is

C=Cya). O
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