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On a Regularity of Biharmonic Approximations to
a Nonlinear Degenerate Elliptic PDE
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Abstract. Under appropriate assumption on the coefficients, we prove that a sequence of biharmonic
regularization to a nonlinear degenerate elliptic equation with possibly rough coefficients preserves certain
regularity as the approximation parameter tends to zero. In order to obtain the result, we introduce a
generalization of the Chebyshev inequality. We also present numerical example.

1. Introduction

In this paper, we consider a biharmonic regularization to the following nonlinear degenerate elliptic
equation

Qu =

d∑
i=1

∂xi

( d∑
j=1

ai j(x,Du)∂x j u + bi(x,u,Du)
)
+ci(x,u,Du)∂xi u

+d(x)u (1)

= f +

d∑
i=1

∂xi1
i, x ∈ Ω ⊂ Rd, Du = ∇u = (∂x1 , . . . , ∂xd ),

where the coefficients will be specified later. By degenerate ellipticity, we imply that the coefficients ai j,
i, j = 1, . . . , d, satisfy degenerate ellipticity conditions

0 ≤ λ(x, p)|ξ|2 ≤ ai j(x, p)ξiξ j, x ∈ Ω, p ∈ Rd, (2)

for all ξ = (ξ1, . . . , ξd) ∈ Rd
\0. This means that at some points x ∈ Ω and for certain values of Du, the

principal part of equation (1) (this is ∂xi (ai j(x,Du)∂x j u)) can become zero. If this happens, then we are
loosing H1-estimates of the solution and thus none of the standard Ck,α-estimates are available (see e.g.
[10]). Therefore, existence of solutions to such equations in general are not known.

2010 Mathematics Subject Classification. Primary 35K65; Secondary 65N30
Keywords. Chebyshev inequality; nonlinear degenerate elliptic equations
Received: 13 March 2015; Revised: 07 July 2015: Accepted: 01 July 2015
Communicated by Ljubiša D.R. Kočinac
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However, if we assume that ai j(x, |Du|) = |Du|N−2, N ≥ 2, we reach to the well known N-Laplacian
for which the existence of solution is well known (see e.g. [2, 12] and references therein). In this article
we aim to make one of the first steps in the direction of generalizing the N-Laplacian to a heterogeneous
anisotropic case, i.e. to the case of degenerate elliptic equations whose coefficients depend on both x and
|Du|, and they are not diagonal or even symmetric. To this end, beside degenerate ellipticity, we needed
another property of the N-Laplacian, and that is co-monotonicity of the minimal eigenvalue of the matrix
a(x, λ) = (ai j(x, λ))i, j=1,...,d and the function λ2 (see (6) below).

Indeed, the Poisson equation corresponding to the N-Laplacian has the form

∇ · (|Du|N−2Du) = f on a bounded domain Ω ⊂ Rd.

If we assume that u ∈ H1
0(Ω) then, multiplying the N-Laplacian by u and integrating over Ω, we get:∫

Ω

|Du|N−2
|Du|2dx ≤

∫
Ω

f udx. (3)

Since λN−2 and λ2 have the same monotonicity for λ > 0 (consult (6) again), we can use the Chebyshev
inequality in the integral form (Theorem 2.1 below) to conclude that u ∈ W1,N−2(Ω) ∩W1,2(Ω). The latter
property follows directly from (3), but it still reveals an intrinsic property of the N-Laplacian which enables
us to discover regularity properties of (2). We shall specify the assumptions in Section 3.

Standard way to solve equations of type (1) is to use a fixed points arguments [7, Section 11] or some
kind of vanishing viscosity procedures [4]. In order to use the fixed point theory, we need appropriate
estimates (e.g. [7, 10]) which we do not have due to lack of the strict ellipticity. As for the vanishing
viscosity approach, in our situation, we have the equation in which the nonlinearity acts on the derivative
of the unknown function, and thus we need additional assumptions on the nonlinearity (similarly to the
viscosity solutions approach from [4]). Therefore, we cannot (in general) apply either of the two procedures.
Instead, we shall regularize the problem with the fourth order approximation as follows:

d∑
i=1

[
∂xi

 d∑
j=1

ai j(x,Dun)∂x j un + bi(x,un,Dun)

 + ci(x,un,Dun)∂xi un

]
+ d(x)un (4)

= f +

d∑
i=1

∂xi1
i +

1
n

∆2un, n ∈ N.

We augment the latter equation with appropriate boundary conditions:

u|∂Ω = 0, ∆u|∂Ω = 0. (5)

Existence of the solution to (4), (5) can be obtained by using standard fixed point arguments. Our aim is
to inspect behavior of sequence of solutions (un) to (4) as n → ∞ assuming that the solution exists. Let us
also remark that it is not unusual to consider properties of approximations whose existence is not granted
in general. The typical example is the diffusion-dispersion limit for instance (see e.g. [1, 11] and references
therein).

Let us note that approximate solution to (4), (5) can be constructed using the numerical methods e.q.
fixed point iterations and finite element method.

Dealing with regularity of solutions which are crucial for convergence of sequences of approximate
solutions in general is much more complicated for biharmonic equations than for problems that can be
treated by well-developed standard methods, such as second-order elliptic problems. First of all, there is
no maximum principle for the biharmonic problem so we can not get some estimates of the solution by the
methods used to deal with second-order elliptic problems. Secondly, we know little about the properties
of the eigenfunctions of the biharmonic operator in Rd.

The novelty in the approach is usage of the Chebyshev inequality (in the integral form; see Theorem
2.1). In order to use the inequality, one needs co-monotonicity of the involved functions. This is in principle



A. Novak, J. Šušić / Filomat 31:7 (2017), 1835–1842 1837

quite strict requirement but we succeeded to relax it by introducing so called almost similarly ordered
sequences or functions and deriving a Chebyshev type inequality merely from the almost similarly ordered
property.

The paper is organized as follows.
In Section 2, we introduce assumptions, auxiliary notions and notations. In particular, we prove a

generalization of the Chebyshev inequality. In Section 3, we prove that the sequence of approximations to
(1) remains uniformly bounded in H1

loc(Ω) and in the last section we present numerical examples together
with a convergence test.

2. Preliminaries

Let us first introduce a variant of the Chebyshev integral inequality. To this end, recall that the classical
Chebyshev integral inequality has been proved in [3]. More precisely, it holds

Theorem 2.1 (Chebyshev integral inequality). Let f , 1 : Ω → R be two non-negative integrable functions. If
they are monotonic in the same direction (co-monotonic), i.e. if it holds

( f (x) − f (y))(1(x) − 1(y)) ≥ 0 for all x, y ∈ Ω, (6)

then it holds ∫
Ω

f (x)dx
∫

Ω

1(x)dx ≤ meas(Ω)
∫

Ω

f (x)1(x)dx.

We introduce the following definition.

Definition 2.2. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two vectors of real numbers. We say that the
vectors a and b are almost similarly ordered, if there exists a positive real constant C such that

ai(Cbi − b j) + a j(Cb j − bi) ≥ 0. (7)

If C = 1 then (7) is reduced to the standard co-monotonicity property (6) (rewritten in the terminology
of vectors).

Theorem 2.3 (Generalized Chebyshev inequality). Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be almost
similarly ordered non-negative real vectors for some C > 1. Then there holds

1
n2

n∑
k=1

ak

n∑
k=1

bk ≤
C
n

n∑
k=1

akbk. (8)

Proof. It holds

Cn
n∑

j=1

a jb j −

n∑
i=1

ai

n∑
j=1

b j =

n∑
i, j=1

(
ai(Cbi − b j) + a j(Cb j − bi)

)
≥ 0.

The above inequalities obviously yield (8).

Assumption (7) is clearly weaker than (6). For instance take a1 = 1, a2 = 2, b1 = 2, b2 = 1, and C = 2 in
(2.2). Vectors (a1, a2) and (b1, b2) are not co-monotonic but they satisfy (7) with C = 2.

Moreover, under the conditions of Theorem 2.3 and following its proof, we can prove the inequality

n∑
k=1

pkak

n∑
k=1

pkbk ≤ C
n∑

k=1

pkakbk,

where (pk) is a vector of positive numbers such that
n∑

k=1
pk = 1.

It is natural to extend the previous concept in the continuous setting.
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Definition 2.4. Two functions f , 1 : Ω→ R are almost similarly ordered on Ω if there exists a constant C ≥ 1,
such that

f (x)(C1(x) − 1(y)) + f (y)(C1(y) − 1(x)) ≥ 0. (9)

The following variant of the result from [3] holds.

Theorem 2.5. (Generalized Chebyshev integral inequality) Let f , 1 : Ω → R be almost similarly ordered functions
in the sense of (9) which are integrable on the bounded domain Ω ⊂ Rn and non-negative out of a set of measure zero.
Then it holds

1
Cµ(Ω)

∫
Ω

f (x) dx
∫

Ω

1(x) dx ≤
∫

Ω

f (x)1(x) dx, (10)

where µ(Ω) = meas(Ω).

Proof. It is enough to prove the theorem under the assumptions that f , 1 ∈ C(Ω). The general case follows by
the density arguments (since the continuous functions are dense in the space of locally integrable functions;
for details see [3]). This means that we can work with Riemann instead of Lebesgue sums in the sequel.

Having this in mind, assume that we can split Ω on, say Nd, hyper-cubes with the edge-length 1/N
centered at ξr, r = 1, . . . ,N (we can assume the latter without loosing on generality since we can approximate
the domain Ω by such cubes), and remark that it holds according to Theorem 2.3:

C
Nd∑
r=1

f (ξr)1(ξr)
1

µ(Ω)Nd
≥

Nd∑
r=1

f (ξr)
1

µ(Ω)Nd

Nd∑
r=1

1(ξr)
1

µ(Ω)Nd
.

Letting N→∞ in the above inequality, we find that

Cµ(Ω)
∫

Ω

f (x)1(x) dx ≥
∫

Ω

f (x) dx
∫

Ω

1(x) dx,

and from here (10) immediately follows.

Remark 2.6. If f , 1 : Ω→ R from Theorem 2.5 are almost oppositely ordered on Ω ⊂ Rn functions, that is, if
the relation f (x)(c1(x)− 1(y)) + f (y)(c1(y)− 1(x)) ≤ 0 for some c > 0 is valid, then as in the proof of Theorem
2.5, we can prove that ∫

Ω

f (x) dx
∫

Ω

1(x) dx ≥ cµ(Ω)
∫

Ω

f (x)1(x) dx.

Let us now introduce the assumptions on the coefficients of (1). In order to avoid unsubstantial
technicalities, we shall assume that we are dealing with the equation

d∑
i, j=1

∂xi (ai j(x,Du)∂x j u) = f (x,u,Du), x ∈ Ω ⊂ Rd. (11)

We assume

(a) max
(v,p)∈Rd+1

f (·, v, p) ∈ L2(Ω);

(b) it holds (the special variant of) (2)

0 ≤ λ(x, |p|)|ξ|2 ≤ ai j(x, p)ξiξ j, x ∈ Ω, p ∈ Rd. (12)



A. Novak, J. Šušić / Filomat 31:7 (2017), 1835–1842 1839

Denote by Ω̃ set of points x ∈ Ω for which there exists a neighborhoodU(x), function λ̃x : R → [0,∞),
and a constant M > 0 such that λ̃x(q) ≤ λ(y, q) ≤Mλ̃x(q), y ∈ U(x). We also asume that the functions

λ̃x(q) and q2, x ∈ Ω̃ (13)

are almost similarly ordered for q ≥ 0 with the constant C(x) ≥ 1 appearing in (9).
Let us finally recall the notion of the weak solution to

d∑
i, j=1

∂xi (ai j(x,Dun)∂x j un) = f +
1
n

∆2un, x ∈ Ω. (14)

Definition 2.7. We say that the function un ∈ H2
0(Ω) is an approximate solution to (14) with the boundary

conditions (5) if for every ϕ ∈ H2
0(Ω), it holds

−

∫
Ω

d∑
i, j=1

ai j(x,Dun)∂xi un∂x jϕ
)
dx =

∫
Ω

fϕdx +
1
n

∫
Ω

∆un∆ϕdx.

3. Regularity Estimates for the Fourth Order Approximation

Before we formulate the main theorem, remark that we have no regularity assumptions on λ or [ai j]
except the growth rate given in the assumptions on λ from the previous section. However, since we have
regularized the equation with the higher order terms, we can expect (relatively mild) L2-boundedness of
the sequence of solutions to (14). We support the above arguing by the numerical examples at the end of the
paper. Moreover, if we assume that Ω̃ = Ω, we can use the Poincare inequality to derive L2-boundedness
from (15) below. Having this in mind, the following theorem holds.

Theorem 3.1. Assume that the sequence of approximate solutions (un) of (14) satisfying (5) is uniformly bounded
in L2

loc(Ω). Then, with the notations from the previous section, it holds for every (relatively) compact K ⊂⊂ Ω̃

‖Dun‖L2(K) ≤ C‖ max
(v,p)∈Rd+1

f (·, v, p)‖L2(Ω)‖un‖L2(Ω), (15)

for some constant C > 0.

Proof. According to the definition of the weak solution given in Definition 2.7, we have∫
Ω

d∑
i, j=1

ai j(x,Dun)∂xi un∂x j undx +
1
n

∫
Ω

d∑
i, j=1

∂2
xi

un∂
2
x j

undx = −

∫
Ω

f undx.

Using the degenerate ellipticity property (b) of the matrix [ai j], we conclude

∫
Ω

λ(x, |Dun|)|Dun|
2dx +

1
n

∫
Ω

 d∑
i=1

∂2
xi

un


2

dx ≤ −
∫

Ω

f undx.

Now, fix the compact set K ⊂⊂ Ω. Using property (13) of the function λ and non-negativity of the second
term on the right hand side of the last expression, we see that in a neighborhoodU(x0) ⊂ Ω of almost every
x0 ∈ K, it holds

1
C(x0)meas(U(x0))

∫
U(x0)

λ̃x0 (|Dun|)dx
∫
U(x0)
|Dun|

2dx ≤ −
∫

Ω

f undx. (16)
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Since K is compact, we can find finite number of points xs, s ∈ {1, . . . ,N}, such that the neighborhoodsU(xs)
cover entire K. Thus, from (16) we conclude

min
1≤s≤N

(
1

C(xs)meas(U(xs))

∫
U(xs)

λ̃xs (|Dun|)dx
) ∫

K
|du|2dx ≤ −N

∫
Ω

f undx. (17)

Using the Cauchy-Schwartz inequality on the right-hand side of (17), and taking (b) into account, we
conclude

∫
K
|Dun|

2dx ≤
K1

meas(Ω) K2
‖ f ‖L2(Ω)‖un‖L2(Ω), (18)

for appropriate constants K1 and K2. Since ‖un‖L2(Ω) is bounded, we conclude the proof.

From the latter theorem, we cannot conclude about global Lp-boundedness of the gradient of u. However,
if we assume a growth rate of λ(x, p) with respect to p around the critical point x where λ(x, p) = 0. For
instance, if we assume that 0 ∈ Ω is the critical point, and in some neighborhood of

λ(|x|, p) ≤ |x|αp−β,

where α, β > 0, then, under the assumptions of Theorem 3.1, we conclude

|x|α|Dun|
2−β = Fn ∈ L1(Ω) (uniformly bounded in L1(Ω)).

Thus, if β < 2, using the Hölder inequality, we can find γ > 0 such that

|Dun|
(2−β)/γ =

( Fn

|x|α

)1/γ

∈ L1(Ω)

which provides certain regularity of the solution to (4) around the critical points. For instance, in our
numerical experiment, we will have function of the form

λ(|x|,Dun) = |x||Dun|,

and keeping in mind that Ω is bounded it is easy to see that

Dun is uniformly bounded in L1(Ω).

Thus, according to the Relich theorem, we conclude that un converges strongly in L1(Ω). We shall see that
numerical experiments show not only the convergence but even much more regularity of the approximate
solutions.

4. Numerical Experiment

Let Ω = [0, 1]2. We consider two dimensional boundary value problem

−div
(
((x1 − 0.2)2 + (x2 − 0.3)2)(10 + |Du|2)Du

)
= f − ε∆2u, (x1, x2) ∈ Ω, (19)

equipped with (5) where f (x1, x2) = 2
(
(x1 + 1)3 + e1+x1x2

)
.

Numerical solution of the regularized problem (19) is obtained by using fixed point iterations and finite
element method. Pictures of the solution for different triangularization and ε are presented bellow. We also
performed convergence test.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Solution of the equation (19) computed on N ×N mesh with ε = 1/N2 plotted together with triangulation of the domain.
a) N = 5, b) N = 10, c) N = 20, d) N = 40, e) N = 80, f) N = 160.
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N ‖uE − uN‖2/‖uE‖2

5 0.709188
10 0.454481
20 0.242811
40 0.111621
80 0.0368282
160 0.0099392

Table 1: Convergence test. With uE we denote solution of (19) computed on N ×N mesh with N = 320 and ε = 1/N2.
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