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Abstract. In this paper, Let the matrix A ∈ Cn×n with Ind(A) = k, we first construct two bordered matrices
based on [32], which gave a method for computing the null space of Ak by applying elementary row
operations on the pair

(
A I

)
. Then two new Algorithms to compute the Drazin inverse Ad are presented

based on elementary row operations on two partitioned matrices. The computational complexities of the
two Algorithms are detailed analyzed. When the index k = Ind(A) ≥ 5, the two Algorithms are all faster
than the Algorithm by Anstreicher and Rothblum [32]. In the end, an example is presented to demonstrate
the two new algorithms.

1. Introduction

Throughout the paper we shall use the notation of [1,2,3]. The symbol Cm×n
r denotes the set of all

m × n complex matrices with rank r, Cn stands for the n dimensional complex space. I denotes the identity
matrix. For A ∈ Cm×n, the symbols R(A),N(A),A†,A∗ and r(A) denote its range, null space, M-P inverse, the
conjugate transpose and rank, respectively. Here we recall that the index of A ∈ Cn×n, denoted by Ind(A), is
the smallest nonnegative integer k such that r(Ak) = r(Ak+1).

In 1958 Drazin [4] showed that for any square A ∈ Cn×n, there exists an unique matrix X ∈ Cn×n satisfying
the following three equations

AkXA = Ak (1k)
XAX = X (2)
AX = XA (5)

where k = Ind(A). This X is called the Drazin inverse of A and denoted by Ad. In particular, if Ind(A) ≤ 1,
the Drazin inverse is called the group inverse of A, denoted by A1. Let A ∈ Cm×n

r , T be a subspace of Cn of
dimension s ≤ r and S be a subspace of Cm of dimension m − s such that

AT ⊕ S = Cm. (1.1)
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Then there exists an unique matrix X such that XAX = X with R(X) = T and N(X) = S. This matrix X is
called the outer inverse, or {2}-inverse, of A with prescribed range T and null space S and denoted by A(2)

T,S.
In addition, suppose the matrix G satisfies R(G) = T and N(G) = S, it is well know that

A(2)
T,S =

{
A† i f G = A∗

Ad i f G = Ak (1.2)

These concepts and properties can be found in the famous books [1, 2, 3].
The Drazin inverse occurs in a number of applications, for instance, finite Markov chains [5], singular

differential and difference equations [2], multibody system dynamics [6] and so on.
In the latest fifty years, there have been many famous specialists and scholars, who investigated the

Drazin inverse Ad. Its perturbation theories were introduced in [7-15]. The research on the representations
of the Drazin inverse for block matrices can be seen in [16-22]. Many representations and computations for
the Drazin inverse of a square matrix have also been widely researched [23-31].

One handy method of computing the inverse of a nonsingular matrix A is the Gauss-Jordan elimination
procedure by executing elementary row operations on the pair

(
A I

)
to transform it into

(
I A−1

)
.

Moreover Gauss-Jordan elimination can be used to determine whether or not a matrix is nonsingular.
However, one can not directly use this method to compute Drazin inverse Ad on a square singular matrix
A.

1987 Anstreicher and Rothblum [32] used this way to compute the index, generalized null spaces, and
Drazin inverse (The idea will be recalled in the second section) . Recently, the authors [33-36] used Gauss-
Jordan elimination methods to compute the A† and A(2)

T,S, respectively. More recently, these algorithms were
further improved by Ji [37, 38], P.S. Stanimirovic and M.D. Petkovic [39].

In [33, 34], the first author, Chen and Gong proposed an algorithm for computing M-P inverse A† and the
outer inverse A(2)

T,S starts from elementary row operations on the pair
(

GA I
)
. Then, Ji [37], Stanimirovic

and Petkovic [39] proposed an alternative explicit expressions for A† and A(2)
T,S, respectively. These methods

begin with the elementary row operations on the pair
(

G I
)

and do not need to compute A∗A or GA.
More recently the first Author and Chen [35] start with the elementary row and column operations on the

partitioned matrix
(

GAG G
G 0

)
for computing A(2)

T,S, then in [36] the author improved the algorithm [35]

to compute M-P inverse A†. In [38] Ji proposed a new method for computing the outer inverse A(2)
T,S (The

algorithm will be also restated in the second section) by applying elementary row operations also on the
pair

(
G I

)
.

All algorithm for computing the out inverse A(2)
T,S need to know the matrix G. But for singular square

matrix A ∈ Cn×n with Ind(A) = k to compute Drazin inverse Ad, the matrix G satisfied R(G) = R(Ak) = T and
N(G) = N(Ak) = S is difficult to find without known the Ind(A). If we know the Ind(A) = k, these methods
not only increase the computational cost to compute the Ak, but also it worsen the condition number.

In this paper, we will propose two alternative methods of elementary row operations for Drazin Ad by
applying row operations first on

(
A I

)
, second on

(
A∗ I

)
. Our approach is like the one in [36, 38] by

working a bordered matrix and the Drazin is easy read off from the computed result but there is no need
for forming Ak.

The paper is organized as follows. The ideals of computational Ad in [32] and A(2)
T,S in [38] are repeated in

the next section. In section 3, we derive two novel explicit expressions for Ad, propose two like Gauss-Jordan
elimination procedure for Ad based on the formula. In section 4, An illustrative example are presented to
explain the corresponding improvements of the algorithm.
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2. Preliminaries

The following two lemmas will be used repeatedly in the following sections.
Lemma 2.1[3] let A ∈ Cn×n

r with Ind(A) = k and r(Ak) = s ≤ r, and U,V∗ ∈ Cn×(n−s)
n−s be matrices whose

column form bases for N(Ak) and N(Ak∗ ) respectively. Then

D =

(
A U
V 0

)
(2.1)

is nonsingular and

D−1 =

(
Ad U(VU)−1

(VU)−1V −(VU)−1VAU(VU)−1

)
(2.2)

Lemma 2.2[23] Let A ∈ Cn×n
r with Ind(A) = k and r(Ak) = s ≤ r, Ak = PQ is a full-rank factorization of Ak.

Then
(1)QAP is an invertible complex matrix.
(2)Ad = P(QAP)−1Q.
In [32], Anstreicher and Rothblum begin with elementary row operations on the pair

(
A I

)
to compute

the index, generalized null spaces, and Drazin inverse. Here we repeat the ideal of their algorithm in detail
as following.

Consider a square A ∈ Cn×n with Ind(A) = k. In the course of the algorithm a sequence of pairs of
matrices

(
A(i) B(i)

)
are generated, where

(
A(0) B(0)

)
=

(
A I

)
. Given

(
A(i) B(i)

)
, execute row

operations on A(i) to convert it into a matrix whose nonzero rows are linearly independent; moreover, if
A(i) is found to be nonsingular, the algorithm terminates. Simultaneously, execute the same row operations

on B(i). Let A
(i)

and B
(i)

be the result of executing the above row operations on A(i) and B(i), respectively.

If A
(i)

has zero rows, exchange these rows with the corresponding rows of B
(i)

and get A(i+1) =

 A
(i)
1

B
(i)
2

 =(
A(i+1)

1
A(i+1)

2

)
,B(i+1) =

(
B

(i)
1
0

)
=

(
B(i+1)

1
0

)
, then proceed to iteration i + 1. The authors show that if k is the index

of A, then the algorithm will always terminate on exactly the kth iteration. Moreover, the rows shuffled on
iterations 0, . . . , i − 1, for i = 1, . . . , k, are a basis of the left null space of Ai. In addition, the authors also

show that if on iteration k, A(k) is transformed into the identity matrix, i.e., A
(k)

= I, and Â is defined to be

the resulting matrix B
(k)

, then the Drazin inverse of A is equal to Âk+1Ak.
Anstreicher and Rothblum’s results are summarized in the following Algorithm:
Algorithm 2.1 Drazin inverse AR-Algorithm is stated as follows:
(1) In put A ∈ Cn×n with Ind(A) = k;
(2) Perform elementary row operations on the pair

(
A(i) B(i)

)
into

(
A

(i)
B

(i) )
, where

(
A(0) B(0)

)
=(

A I
)

(3) If A(i) is nonsingular, then A
(i)

= I and B
(i)

= Â then stop; else, i = i + 1, i = 0, 1, . . . , k;
(4) Compute the output Ad = Âk+1Ak.
Algorithm 2.1 also generates the basis of the left null space of Ak, which is restated as the following

lemma.
Lemma 2.3[32] Let A ∈ Cn×n with Ind(A) = k and and r(Ak) = s ≤ r. Suppose that the Algorithm 2.1 is

applied to A, then the algorithm terminates on iteration k. Furthermore, for i = 1, . . . , k, the union of the
rows of A(1)

2 , . . . ,A
(k)
2 is linearly independent and forms a basis of null(Ak)T.

In [32], Anstreicher and Rothblum also studied the computational complexity of the shuffle algorithm
2.1. The upper bound on the total number of arithmetic operations required to execute the algorithm is
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n3 + nN(n − N
k ), where N = n − s. However we confirm that the upper bound is 2kn3 + nN(n − N

k ) because
from the value Ad = Âk+1Ak of last step, 2k + 1 matrices are multiplied.

Lemma 2.4[32] Let A ∈ Cn×n with Ind(A) = k and and r(Ak) = s ≤ r (or N = dim(nillAk) = n − s).
Suppose that the Algorithm 2.1 is applied to A, with the algorithm terminates on iteration k. Furthermore,
suppose that the algorithm is implemented so that A(i) is the row reduced echelon form of A(i).i = 0, 1, . . . , k.
Then an upper bound on the total number of arithmetic operations required to execute the algorithm is
2kn3 + nN(n − N

k ).

In [38] Ji proposed a new method for computing the outer inverse A(2)
T,S by applying elementary row

operations also on the pair
(

G I
)
. Here we will review the ideas for computing Ad.

He shows that there exists elementary matrix P ∈ Cn×n such that

P
(

Ak∗ I
)

=
(

PAk∗ P
)

=
(

B I
)

(2.3)

where B =

(
B1
0

)
and B1 ∈ Cs×n

s .

Then he applies elementary row operations on the pair
(

B∗ I
)
, or equivalently there exists a nonsin-

gular matrix Q ∈ Cn×n such that

Q∗
(

B∗ I
)

=
(

C Q∗
)

(2.4)

where C =

(
Is 0
0 0

)
. If the matrices P and Q are partitioned into

P∗ =
(

P1 P2

)
and Q =

(
Q1 Q2

)
(2.5)

where P2 ∈ Cm×(m−s)
m−s and Q2 ∈ Cn×(n−s)

n−s , then

R(P2) = N(Ak) and N(Q2) = R(Ak). (2.6)

According to the Lemma 2.1, we know the bordered matrix (2.1) becomes

D =

(
A P2
Q2 0

)
. (2.7)

We can compute the inverse D−1 by applying the Gauss-Jordan elimination procedure to the matrix(
D I

)
and read off the Ad from the inverse D−1.

The above procedure for computing the Drazin inverse Ad using Gauss-Jordan elimination will be
described as follows:

Algorithm 2.2 Drazin inverse Ji-Algorithm is stated as follows:
(1) In put A ∈ Cn×n, compute Ind(A) = k, Ak and r(Ak) = s;

(2) Execute elementary row operations on
(

Ak∗ I
)

to get
(

B P
)

where B ∈ Cn×n is in the reduced
row echelon form;

(3) Execute elementary row operations on
(

B∗ I
)

to get
(

C Q∗
)

where C =

(
Is 0
0 0

)
;

(4) Partition P and Q according to (2.5) and form the matrix D in (2.7);

(5) Perform elementary row operations on the matrix
(

D I
)

until
(

I D−1
)

is reached and return
the submatrix of D−1 consisting of the first n rows and the first n columns, i.e., Ad.
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3. Main Results

Using algorithm 2.1 or algorithm 2.2 for computing the Drzain inverse Ad, we must to calculate the
matrix Ak. In this section, we will propose two like Gauss-Jordan methods to compute Ad,which is not need
to compute Ak, then summary two algorithms of these methods.

Theorem 3.1 Let A ∈ Cn×n with Ind(A) = k and r(Ak) = s, the two sequence matrices {A(2)
i }, i = 1, 2, . . . , k

and {A∗(2)
i }, i = 1, 2, . . . , k are generated by applying Algorithm 2.1 to A and A∗, respectively. If we denote

B =


A(2)

1
A(2)

2
...

A(2)
k

, C∗ =


A∗(2)

1
A∗(2)

2
...

A∗(2)
k

 and M =

(
A C
B 0

)
. Then

(1) Matrices B ∈ C(n−s)×n
n−s and C ∈ Cn×(n−s)

n−s are all full rank, further BAk = 0 and AkC = 0, or Equivalent to

N(B) = R(Ak) and R(C) = N(Ak). (3.1)

(2) M is invertible matrix and

M−1 =

(
Ad C(BC)−1

(BC)−1B −(BC)−1BAC(BC)−1

)
. (3.2)

Proof From Algorithm 2.1, Lemma 2.1 and lemma 2.3, we know the above result is correct.
In summary of the above Theorem, we have the following Algorithm for computing Ad.
Algorithm 3.1 Drazin inverse ZS-Algorithm 1:
(1) In put A ∈ Cn×n with Ind(A) = k;

(2) Perform elementary row operations on the pair
(

A(i) B(i)
)

into
(

A
(i)

B
(i) )

(i = 0, 1, . . . , k), where

(
A(0) B(0)

)
=

(
A I

)
to generate the sequence matrices {A(2)

i }, i = 1, 2, . . . , k, denote B =


A(2)

1
A(2)

2
...

A(2)
k

;

(3) Perform elementary row operations on the pair
(

A∗(i) B∗(i)
)

into
(

A
∗(i)

B
∗(i) )

(i = 0, 1, . . . , k), where

(
A∗(0) B∗(0)

)
=

(
A∗ I

)
to generate the sequence matrices {A∗(2)

i }, i = 1, 2, . . . , k, denote C∗ =


A∗(2)

1
A∗(2)

2
...

A∗(2)
k

;

(4) Form the partitioned matrix M =

(
A C
B 0

)
;

(5) Perform elementary row operations on the matrix
(

M I
)

until
(

I M−1
)

is reached and return
the submatrix of M−1 consisting of the first n rows and the first n columns, i.e., Ad.

Here, an example is given to demonstrate the process of computing the matrices B and C. Take matrix
A from [32], where

A =


2 4 6 5
1 4 5 4
0 −1 −1 0
−1 −2 −3 −3

 .
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Elementary row operations transform
(

A I
)

into
1 0 1 0 1 −2 −2 −1
0 1 1 0 0 0 −1 0
0 0 0 1 0 1 2 1
0 0 0 0 1 1 2 3

 .
we exchange row of zeros with the corresponding row of the right hand matrix. This yields

1 0 1 0 1 −2 −2 −1
0 1 1 0 0 0 −1 0
0 0 0 1 0 1 2 1
1 1 2 3 0 0 0 0

 .
One then resumes elementary row operations, which result in

1 0 1 0 1 −2 −2 −1
0 1 1 0 0 0 −1 0
0 0 0 1 0 1 2 1
0 0 0 0 0 0 −1 1

 .
A second exchange row of zeros with the corresponding row of the right hand matrix


1 0 1 0 1 −2 −2 −1
0 1 1 0 0 0 −1 0
0 0 0 1 0 1 2 1
0 0 −1 1 0 0 0 0

 .
Elementary row operations are now finally used to convert the left hand matrix into the identity, yielding

1 0 0 0 1 −3 −4 −2
0 1 0 0 0 −1 −3 −1
0 0 1 0 0 1 2 1
0 0 0 1 0 1 2 1

 .
Denote B =

(
1 1 2 3
0 0 −1 1

)
, from Algorithm 2.1 and Theorem 3.1 we know Ind(A) = 2 and N(B) =

R(A2). We easy to check BA2 = 0.

Similar, if we perform the above procedure on the pair
(

A∗ I
)
, the matrix C =


1 0
1 0
−1 1
0 −1

 is obtained,

C satisfy R(C) = N(A2) or A2C = 0.
According to Theorem 3.1, we know that B and C are full row rank and full column rank, respectively.

We begin with the elementary row operations on
(

B∗ I
)
. Let F be the product of all the elementary

matrices representing these elementary row operations. we can write

F
(

B∗ I
)

=
(

FB∗ F
)

=
(

B̃∗ F
)

(3.3)

where B̃∗ =

(
In−s

0

)
.
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If we start with the elementary row operations on
(

C I
)
. Let G be the product of all the elementary

matrices representing these elementary row operations. we can write

G
(

C I
)

=
(

GC G
)

=
(

C̃ G
)

(3.4)

where C̃ =

(
In−s

0

)
.

Theorem 3.2 Let A ∈ Cn×n with Ind(A) = k and r(Ak) = s, the two matrices B and C are generated by
applying Algorithm 2.1 to A and A∗, respectively. F and G are two nonsingular matrices such that (3.3) and
(3.4). If the matrices F and G are partitioned into

F =

(
F1
F2

)
and G =

(
G1
G2

)
(3.5)

where F∗2 ∈ Cn×s
s and G2 ∈ Cs×n

s , such that

R(F∗2) = N(B) = R(Ak) and N(G2) = R(C) = N(Ak). (3.6)

Further, we have
Ad = F∗2(G2AF∗2)−1G2 (3.7)

Proof In view of (3.3) and (3.4), we can write

B̃∗ =

(
In−s

0

)
= FB∗ =

(
F1
F2

)
B∗ =

(
F1B∗

F2B∗

)
(3.8)

and

C̃ =

(
In−s

0

)
= GC =

(
G1
G2

)
C =

(
G1C
G2C

)
(3.9)

By comparing both sideS (3.8) and (3.9), we have F2B∗ = 0 and G2C = 0. This shows BF∗2 = 0.
Thus we have

R(F∗2) ⊂ N(B) and R(C) ⊂ N(G2). (3.10)

Notice that
dim[R(F∗2)] = s = dim[R(Ak)] = dim[N(B)] (3.11)

and
dim[N(G∗2)] = n − s = dim[N(Ak)] = dim[R(C)]. (3.12)

From (3.10), (3.11) and (2.12), we know (3.6) is right.
Following form (3.6) and lemma 2.2, we have Ad = F∗2(G2AF∗2)−1G2

According to the representation of Ad introduced in Theorem 3.2, we summary the following Algorithm
for computing Drazin inverse Ad

Algorithm 3.2 Drazin inverse-ZS Algorithm 2:
(1) In put A ∈ Cn×n with Ind(A) = k;
(2) Perform elementary row operations on the pair

(
A(i) B(i)

)
into

(
A

(i)
B

(i) )
(i = 0, 1, . . . , k), where

(
A(0) B(0)

)
=

(
A I

)
to generate the sequence matrices {A(2)

i }, i = 1, 2, . . . , k, denote B =


A(2)

1
A(2)

2
...

A(2)
k

;
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(3) Perform elementary row operations on the pair
(

A∗(i) B∗(i)
)

into
(

A
∗(i)

B
∗(i) )

(i = 0, 1, . . . , k), where

(
A∗(0) B∗(0)

)
=

(
A∗ I

)
to generate the sequence matrices {A∗(2)

i }, i = 1, 2, . . . , k, denote C∗ =


A∗(2)

1
A∗(2)

2
...

A∗(2)
k

;

(4) Execute elementary roe operations on
(

B∗ I
)

and
(

C I
)

to get F∗2 ∈ Cn×s
s and G2 ∈ Cs×n

s , such
that R(F∗2) = N(B) = R(Ak) and N(G2) = R(C) = N(Ak);

(5) Compute G2AF∗2 and form the block matrix

N1 =

(
G2AF∗2 G2

F∗2 0

)
−→ N2 =

(
Is (G2AF∗2)−1G2
F∗2 0

)
;

(6) Make the block matrices of N2(1, 2) and N2(2, 1) be zero matrices by applying elementary row and
column transformations, respectively, through matrix Is, which yields

N3 =

(
Is 0
0 −F∗2(G2AF∗2)−1G2

)
Then read off Ad = F∗2(G2AF∗2)−1G2.

4. Computational Complexities

We only count the multiplications and divisions. Let us first analysis the complexity of the algorithm
3.1.

The step 2 of algorithm 3.1 to get matrix B is the same as the step 2 and 3 of the Algorithm 2.1. The
upper bound of the required arithmetic operations is nN(n − N

k ). Following the same line the upper bound
of the arithmetic operations for step 3 is also nN(n − N

k ). The step 5 is to calculate the inverse matrix M−1,
the total operations is (n + N)3.

Therefore, it requries

Td(n, k,N) = 2nN(n −
N
k

) + (n + N)3 (4.1)

operations altogether for Algorithm 3.1 to compute the Drazin inverse Ad. If the matrix A is nonsingular,
then N = 0 and Td(n, k,N) = n3 is the arithmetic operations of A−1.

With fix n and k, Td(n, k,N) achieves its maximum vale at N = n. Hence we have

Td(n, k,N) = 2nN(n −
N
k

) + (n + N)3
≤ (10 −

2
k

)n3 (4.2)

We have proved the following theorem:
Theorem 4.1 Let the square matrix A be same as the Lemma 2.4, it takes Td(n, k,N) divisions and

multiplications for Algorithm 3.1 to compute the Drazin inverse where Td(n, k,N) is given in (4.1). Moreover
Td(n, k,N) ≤ (10 − 2

k )n3.
From Lemma 2.4 and Theorem 4.1, by a simple calculations we know that Algorithm 3.1 is faster than

Algorithm 2.1 if k ≥ 5.
The step 2 and step 3 of Algorithm 3.2 is the same as Algorithm 3.1. The upper bound of the required

arithmetic operations for step 2 and setp3 is also 2nN(n − N
k ). In step 4, both

(
B∗ I

)
and

(
C I

)
are

n× (n+N) and require N pivoting steps. The first pivoting step on
(

B∗ I
)

involves N+1 nonzero columns
and it requires N divisions and (n−1)N multiplications with a total of nN operatons. The next each pivoting
step also deals with N + 1 nonzero columns. Adding up, it takes nN2 operations to compute the matrix F∗2.
Similarly, it also takes nN2 operations to compute G2.
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In step 5, it requires nN(n + N) multiplications to compute G2AF∗2. Since first pivoting step on(
G2AF∗2 G2

)
involves n + N nonzero columns and it requires n + N − 1 divisions and (n + N − 1)(N − 1)

multiplications with a total of (n+N−1)N operations. The second pivoting step deals with one less nonzero
columns. It requires n+N−2 divisions and (n+N−2)(N−1) multiplications with a total of (n+N−2)N. Con-
tinuing this way, the Nth pivoting step handles with n + 1 nonzero columns and it requires n divisions and
n(N−1) multiplications with a total of nN. Adding up, it takes (n+N−1)N+(n+N−2)N+. . .+nN =

nN(n+2N−1)
2

operations to compute (G2AF∗2)−1G2.
Then resume elementary row and columns operations on the matrix N2 to transform it into N3. The

complexity of this process is n2N multiplications, which is the count to compute F∗2(G2AF∗2)−1G2.
Hence, the total number of complexity of Algorithm 3.2 is

T′d(N,N, k) = 2nN(n −
N
k

) + 2nN + nN(n + N) +
nN(n + 2N − 1)

2
+ n2N =

7
2

n2N + 2nN(2 −
1
k

) (4.3)

Similarly, with fix n and k, T′d(n, k,N) achieves its maximum vale at N = n. Hence we have

T′d(n, k,N) =
7
2

n2N + 2nN(2 −
1
k

) ≤ (
15
2
−

2
k

)n3 (4.2)

We have proved the following theorem:
Theorem 4.2 Let the square matrix A be same as the Lemma 2.4, it takes T′d(n, k,N) divisions and

multiplications for Algorithm 3.1 to compute the Drazin inverse where T′d(n, k,N) is given in (4.3). Moreover
T′d(n, k,N) ≤ ( 15

2 −
2
k )n3.

From Lemma 2.4 and Theorem 4.2, by a simple calculations we know that Algorithm 3.2 is also faster
than Algorithm 2.1 if k ≥ 4.

5. Numerical Examples

In this section, we shall use an example to demonstrate our results.
Example 1£ Use Algorithm 3.1 and Algorithm 3.2 to compute the Drazin inverse Ad of the matrix in

[32] where

A =


2 4 6 5
1 4 5 4
0 −1 −1 0
−1 −2 −3 −3

 .
Solution First, we will use Algorithm 3.1 to compute Drazin Ad.
Using Algorithm 2.1, we obtain matrices B, C and ind(A) = 2, through elementary row operations on(

A I
)

and
(

A∗ I
)
, respectively. Which are demonstrated in the third section.

B =

(
1 1 2 3
0 0 −1 1

)
C =


1 0
1 0
−1 1
0 −1


where matrices B and C are all full rank and satisfied N(B) = R(A2) and R(C) = N(A2), respectively.

Next, we construct block matrix

M =

(
A C
B 0

)
=



2 4 6 5 1 0
1 4 5 4 1 0
0 −1 −1 0 −1 1
−1 −2 −3 −3 0 −1
1 1 2 3 0 0
0 0 −1 1 0 0


.
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From Lemma 2.1 , we know that matrix M is nonsingular and Ad can be read off from M−1.
Then we perform elementary row operations transform

(
M I

)
into

(
I M−1

)
.

(
M I

)
→

(
I M−1

)
=



1 0 0 0 0 0 3 −1 2 2 −2 1
0 1 0 0 0 0 2 1 3 3 −2 1
0 0 1 0 0 0 −1 0 −1 −1 1 −1
0 0 0 1 0 0 −1 0 −1 −1 1 0
0 0 0 0 1 0 2 2 5 5 −1 0
0 0 0 0 0 1 −1 −1 −2 −3 0 0


.

This yields

Ad =


3 −1 2 2
2 1 3 3
−1 0 −1 −1
−1 0 −1 −1

 .
Second, we will use Algorithm 3.2 to compute Ad.
By applying the elementary row operations on

(
C I

)
, we get

(
C I

)
=


1 0 1 0 0 0
1 0 0 1 0 0
−1 1 0 0 1 0
0 −1 0 0 0 1

→


1 0 1 0 0 0
0 1 0 0 0 −1
0 0 −1 1 0 0
0 0 1 0 1 1

 .
Denote G2 =

(
−1 1 0 0
1 0 1 1

)
, we can easy to check that G2 is full rank and N(G2) = R(B) = N(A2).

Similar, we apply elementary row operations on
(

B∗ I
)
, we have

(
B∗ E

)
=


1 0 1 0 0 0
1 0 0 1 0 0
2 1 0 0 1 0
3 −1 0 0 0 1

→


1 0 1 0 0 0
0 1 −2 1 0 0
0 0 −5 0 1 1
0 0 −1 1 0 0

 .

Let F∗2 =


−5 −1
0 1
1 0
1 0

, then F∗2 is also full rank and R(F∗2) = N(B) = R(A2)

By computing, we have

G2AF∗2 =

(
−1 1 0 0
1 0 1 1

) 
2 4 6 5
1 4 5 4
0 −1 −1 0
−1 −2 −3 −3



−5 −1
0 1
1 0
1 0

 =

(
3 1
−1 0

)
.

According to Algorithm 3.2, we execute elementary row operations on the first two rows of the parti-

tioned matrix N1 =

(
G2AF∗2 G2

F∗2 0

)
again, we have

N1 =



3 1 −1 1 0 0
−1 0 1 0 1 1
−5 −1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


→ N2 =



1 0 −1 0 −1 −1
0 1 2 1 3 3
−5 −1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


.
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One then resume elementary row and column operations on N2, which results in

N2 =



1 0 −1 0 −1 −1
0 1 2 1 3 3
−5 −1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


→ N3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −3 1 −2 −2
0 0 −2 −1 −3 −3
0 0 1 0 1 1
0 0 1 0 1 1


.

Then we can obtain

Ad =


3 −1 2 2
2 1 3 3
−1 0 −1 −1
−1 0 −1 −1

 .
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