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Duality of Herz-Morrey Spaces of Variable Exponent

Yoshihiro Mizuta?

*Department of Mechanical Systems Engineering, Hiroshima Institute of Technology,
2-1-1 Miyake,Saeki-ku,Hiroshima 731-5193, Japan

Abstract. In this paper, we discuss the duality between the inner and outer Herz-Morrey spaces of variable
exponent.

1. Introduction

Variable exponent function spaces are useful for discussing nonlinear partial differential equations with
non-standard growth condition, in connection with the study of elasticity, fluid mechanics; see [20].

Let G be a bounded open set in R", whose diameter is denoted by dg. Let w(:,-) : GX(0,00) — (0,0) be a
uniformly almost monotone function on G X (0, o) satisfying the uniformly doubling condition. Following
Samko [21], for xy € G and variable exponents p(-) and g(-), we consider the inner (small) Herz-Morrey space

Ya(- —p()4q()w .
’[1 )}’q( )'w(G) and the outer (complementary) Herz-Morrey space WZYO]q (G) of variable exponent; see also

[E], 0[4], [5], [6], [8], [13], [16], [20], etc. . Following Di Fratta-Fiorenza [10] and Gogatishvili-Mustafayev
[11], [12], we study the associate spaces among those Herz-Morrey spaces, as extensions of [17], [18]. This
also gives another characterizations of Morrey spaces by Adams-Xiao [1] (see also [12]).

2. Variable Exponent Lebesgue Spaces

Let u be a nonnegative Borel measure on an open set G C R". Consider a measurable function p(-) on G
satisfying

(PO) 1<p(x)<ooforallxeG;

p(-) is referred to as a variable exponent. The variable Lebesgue space L'")(G, p) is the family of all measurable
functions f such that

p(y)
Iflsocn = inf{d>0: fG ('f(Ty)') du(y) <1)

(G < 0,

where Gy = {x € G : p(x) < 0o} and Gp=co = {x € G : p(x) = oco}. If p is the Lebesgue measure on G, then we
write LPY)(G), simply. For fundamental facts of the variable Lebesgue spaces, see [7] and [9].
Note here the following result:
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Lemma 2.1. LPY(G) is a Banach function space in the sense of Benett-Sharpley [3].

3. Herz-Morrey Spaces

We consider the family ()(G) of all positive functions w(:, ) : G X (0, 0) — (0, co) satisfying the following
conditions:

(w0) w(x,0)= lim0 w(x,7r) =0forallx € Gor w(x,0) = co forall x € G;
r—+

(wl) w(x,-)is uniformly almost monotone on (0, ), that is, there exists a constant A; > 0 such that w(x, -)
is uniformly almost increasing on (0, o), that is,

w(x,7) < Ajw(x,s) forallxeGand0<r<s
or w(x, ) is uniformly almost decreasing on (0, o), that is,

w(x,s) < Ajw(x,r) forallxe Gand0<r<s;

(w2) w(x,-)is uniformly doubling on (0, o), that is, there exists a constant A, > 1 such that
Ay w(x,r) < w(x,2r) < Asw(x,r) forallx € Gand r > 0;
and
(w3) there exists a constant A3 > 1 such that
A7' <w(x,1) < A; forallx€G.
Following Samko [21], for xy € G, variable exponents p(:),q(-) and a weight w € ((G), we consider the

24(),w

" (G) consisting of all measurable functions f on G satisfying

inner (small) Herz-Morrey space H' f;
||f||747(')’)q("”“(c) = |lw(xo, t)llfllU’(')(B(xo,t))”L‘V(')((O,dc),dt/t) < o905
His,

more precisely,

: ¢ q) dt
fllggre ) = inf {/\ >0: fd (wCeo, O/ Allo ey ) 7}.
Hi o
Set

x0€G
and

7.{!’('):4(')/’7((;) — Z ﬂr&)},g(-)/n(c)’
x0€G

whose quasi-norms are defined by

Il f ||7{p(->,q(->,m(c) = sup Il f ||7{p(->,q(->,m(c)
- x0€G —lxo}

and

Wfllyposoaigy = A0E 3" fillyponon gy
fllygromoe ) IFI=E )G & i Hi' (G
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respectively.

We further consider the outer (complementary) Herz-Morrey space 7—( w(G) consisting of all mea-

surable functions f on G satisfying

xo}

”f”fp()w( = lw(xo, t)”f”m()(c\s(xo £) ”Lq()((o de)dt/f) < ©0.
Set
p()q()w )q()w
G =[\Hyy (G
x0€G
and

}{P()@()w(c) Zq.(p()q() (G),

x0€G

whose quasi-norms are defined by

||f ||ﬂp<»m(->/w G =sup || f | (Hp(m(

x0€G {xo) ©)

and
|wwm%)mzwm¢2wnmw

respectively.
Then note that

—p()4()w ()
7-{{xo} (G) > L"(G) when [lw(xo, ')”Lq(')((O,dG),dt/t) <

and
p()4()w
7—( (G) LP(G) when ”(l)(x, .)||L’7(')((0,dc),dt/t) < oo forallx € G.
Further,
P()q()w
W (G) = {0} when |lw(xo, Nl o,d0),dat/p =

Is is worth to see the following facts.

Lemma 3.1. Both 7—( p( ) 10(G) and 7—{p( o (G) are Banach function spaces in the sense of Benett-Sharpley [3].

LemMA 3.2. For xg € G,

p()4(),w

p(-),oo,(u —] ,
G cHy, (6.

p(),00,0 pO)a0)w _
HOVG) < HIOONG)  and  Hy,

Throughout this note, let C denote various positive constants independent of the variables in question.
We now show that the Herz-Morrey spaces coincide with those with a constant exponent g if g(-) is
Holder continuous at the origin.
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Lemma 3.3. Suppose q(-) is log-Holder continuous at 0, that is, there is a constant c¢; > 0 such that

C
(Q) |‘7(f) - Q(O)l < mfor 0<t< dc.

Then

HOIOG) = HIOIIOUG)  forall xo € G
and

ﬂp(%q@)’w G) = ﬂP(M(O),w(G).

, —p(a0),
The same is true for ?{fxO]q “(G).

Proof. Let f be a nonnegative measurable function on G satisfying

“ ”( ().9()w S].
f ﬂfxo)q (©)]

Then

e q(t)
o (w(xOr t)”f”LP(')(B(xO,t))> dt/t < 1.
We have

(X0, DI fllro @ < C
for 0 < t < dg. Take a > 0. Then condition (Q) gives
()

q(0) q
(a)(xo, t)||f||Lp<»>(B(x0,t))) < C(a)(xo, t)”f”U(‘)(B(xo,t))) + 40

which gives

dg
q(0)
o (w(xo, t)||f||U’('>(B(x0,t))) dt/t < C.

Thus it follows that

||f||ﬂ7i330(0):“’(c) < C/
which implies that

ﬂﬁ(')/ﬂ(')/a’(G) c WP(')rl/](O)/w(G)_

The converse can be treated similarly. [

We consider the grand Lebesgue space LP)(G) consisting of measurable functions f on G such that

sup eflf(y)l”‘gdy<oo.
G

O<e<p-1

Grand Lebesgue spaces were introduced in [14] for the study of Jacobian, which is useful for the theory of
partial differential equations (see [15]).
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ProrosiTioN 3.4. Set w(x,r) = withv > 0. If g =np/(n +v) > 1, then
—P,00,0 )
7{{3(0} (G) c LT (G)
Proof. Let f be a nonnegative measurable function on G such that
N fllrc\Baoy) <1 for0 < t < dg.

Then for a > n(1 — (g — €)/p) and € > 0 we have

[xo—yl
f f)T™ dy f f)™ (alxo—yl" f ot dt) dy
G G 0
dc
0 G\B(xo,b)
de (q-¢)/p
af g1 (f fly)y dy)
0 G\B(x0,})

<
1-(g-e)/p
% (f Ixo — y|—a/(1—(q—£)/r7) dy) dt
G\B(xo,t)
G
< Cfd tu—lt—v(q—e)t—a+n(1—(q—e)/p)dt
0
G
< Cfd t(v+n/p)a‘—1 dt
0
< Ce,

so that

ejc‘f(y)q_s dy <C,

as required. [

. - . . =)o
RemMARK 3.5. The same conclusion as Proposition 3.4 is true for the variable Herz-Morrey space H fxo b (

if p(-) satisfies

G)
(P2) p(-) is log-Holder continuous in G; that is, there is ¢, > 0 such that

c
lp(x) —p(y)l < : forx,y € G.

~log(1 + |x —yI™)

This can also be extended to the logarithmic weight case as in [17, Theorem 10.1] and [18, Theorem 8.1].

4. Associate Spaces

Let X be a function space consisting of measurable functions on G, with norm || - [|x. Then X" denotes
the associate space of X consisting of all measurable functions f on G such that

Iflx = sup fc F)9() dx < oo

{g:Nlgllx<1}

see Benett-Sharpley [3]; the usual dual space of X is denoted by X".



Y. Mizuta / Filomat 30:7 (2016), 1891-1898 1896
Note here that
(L’”(')(G))' = 170(G).
and
(U’(‘)(G))* = 17'9(G).

when1 <p~ <p* < co.

5. Duality of Herz-Morrey Spaces
Now we are ready to show the duality of Herz-Morrey spaces as extensions of [17] and [18].

Tueorem 5.1. Let xg € G. Suppose there exist constants a,b, Q > 0 such that

(w4.1) t'w(x, t) is quasi-increasing, that is,

sup s'w(xo, s) < Q" w(xo, t); and
O<s<t

(w4.2) t'w(xo, t) is quasi-decreasing, that is,

sup stw(xo, s) < Qtw(xo, t)
t<s<dg

forall 0 <t <dg. Set n(x,r) = w(x, 1)~} Then for a constant exponent 1 < g < oo

(7.{27( ), “’(G)) g (] (G)

and

( P ()4, W(G)) ﬂf;o)iq,m(G)

With the aid of Lemma 3.3, Theorem 5.1 gives the following result.

CororLarY 5.2. Let xg € G and w,n be as in Theorem 5.1. If 1 < p~ < p* < o0, 1 < g~ < g" < oo and q(-) is
log-Holder at O, then

P O Om

0}

(10102 (G)) = "G)

and

PO On VO
(H"""(©) = #H(G)

ExampLe 5.3. The typical examples of w and n are
CU(.X'(), t) = n(x()/ t)_l =t
fore>0.

In necessary modifications of the proof of Theorem 5.1, we can treat logarithmic weights in the following
manner.
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e -1-¢
2 2
TueorEM 5.4. Let xg € G. Set w(x, t) = (log %) and n(xo, t) = (log %) for e > —=1/q. Then for a constant

exponent 1 < g < oo

V@ 1 =04
(HO7(G)) = Hiy " (G)

and
(i "©) =297,

CororLary 5.5. Let w and n be as in Theorem 5.1. Then
(ﬁ.v{ri’('),q’,n(G)), — ﬂp’('),ﬂ”fl(c)'

ReEMARK 5.6. Let w and 1 be as in Theorem 5.1. Then

(Z{p(.)’q,w(c))/ _ (Lp(')(G)), — LP'(')(G) _ ﬂp’(»),q’,ﬂ(c).

For a proof of Theorem 5.1, we have to prepare the following lemmas; see more precisely the proofs in
[17] and [18].

LemMAa 5.7. Let 1 < g < oo and xy € G. Suppose there exist constants b > 0, Q > 1 such that

4 , dt
(w4.1) f n(xo, £)7 n < o0; and
0

2dg .d ,
(w4.2) f sPw(xg,5)™1 ?S < Qtn(xo, 1) forall 0 <t < dg.
t
Then there exists a constant C > 0 such that

< e o
| vt < Qe o oo,

for all measurable functions f and g on G.

LemMma 5.8. Let xg € Gand 1 < g < co. Suppose there exist a > 0 and Q > 0 such that
t
(w4.3) f s*”n(xo,s)q’i—s < Qt"w(xo, )77 forall 0 < t < dg.
0

Set X = ﬂf;:}’q’m(G). Then there exists a constant C > 0 such that

IIQIIW'«;W,W © = CSlJl(p j; |f(0)g(x)ldx = Cllgllx

{xo

for all measurable functions g on G, where the supremum is taken over all measurable functions f on G such that
Ifllx < 1.

It is worth to note that conditions (w4.1) — (w4.3) holds if and only if w satisfies all the conditions in
Theorem 5.1.
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