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Abstract. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a
shortest u − v path in G. A u − v path of length d(u, v) is called u − v geodesic. A set X is convex in G if
vertices from all a− b geodesics belong to X for every two vertices a, b ∈ X.A set of vertices D is dominating
in G if every vertex of V − D has at least one neighbor in D. The convex domination number γcon(G) of a
graph G equals the minimum cardinality of a convex dominating set in G. A set of vertices S of a graph
G is a geodetic set of G if every vertex v < S lies on a x − y geodesic between two vertices x, y of S. The
minimum cardinality of a geodetic set of G is the geodetic number of G and it is denoted by 1(G). Let
D,S be a convex dominating set and a geodetic set in G, respectively. The two sets D and S form a convex
dominating-geodetic partition of G if |D| + |S| = |V(G)|. Moreover, a convex dominating-geodetic partition
of G is called optimal if D is a γcon(G)-set and S is a 1(G)-set. In the present article we study the (optimal)
convex dominating-geodetic partitions of graphs.

1. Introduction

Let G = (V(G),E(G)) be a connected simple graph. Given two vertices u, v ∈ V(G), u ∼ v denotes two
adjacent vertices in G, or equivalently, that uv ∈ E(G). The neighborhood NG(v) of a vertex v ∈ V(G) is the
set of all vertices adjacent to v in G, i.e., NG(v) = {u ∈ V : u ∼ v}. For a set X ⊆ V(G), the open neighborhood
NG(X) is defined to be

⋃
v∈X NG(v) and the closed neighborhood is NG[X] = NG(X) ∪ X. The degree of a vertex

v is de1G(v) = |NG(v)|. A vertex of degree one in G is called an end-vertex in G. The set of end-vertices of G is
denoted by Ω(G).

The distance dG(u, v) between two vertices u and v in a connected graph G is the length of a shortest u− v
path in G. A u − v path of length dG(u, v) is called a u − v geodesic. A set X is convex in G if all the vertices
belonging to every a − b geodesic are contained in X, for any two vertices a, b ∈ X. A subset D of V(G) is
dominating in G, if every vertex of V(G)−D has at least one neighbor in D.A set X ⊆ V is a convex dominating
set if X is convex and dominating. The convex domination number γcon(G) of a graph G equals the minimum
cardinality of a convex dominating set. By a γcon(G)-set we mean a convex dominating set of cardinality
γcon(G) and is called a minimum convex dominating set. The convex domination number was first introduced
in [17].

We define I[u, v] to be the set of all vertices lying on some u − v geodesic of G and for a nonempty set of
vertices S ⊆ V(G), let I[S] =

⋃
u,v∈S I[u, v]. A set S ⊆ V(G) is a geodetic set if I[S] = V(G). The cardinality of
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I. González Yero, M. Lemańska / Filomat 30:11 (2016), 3075–3082 3076

any geodetic set in G is called the geodetic number of G and it is denoted by 1(G). By a s(G)-set we mean a
geodetic set of cardinality s(G), which is called a minimum geodetic set. Geodetic sets were introduced first
in [6].

The graph partition problem has been extensively studied in graph theory. Roughly speaking, such
problem deals with with partitioning the vertex set V(G) of a graph G in such a way that every set of the
partition satisfies a specific property. Sometimes the partition problem is related with finding the minimum
number of sets in the partition, sometimes with finding the maximum number of sets in the partition,
sometimes with computing how many different partitions can be constructed having the same quantity of
“similar” elements in each set of the partition, etc. One particular and interesting case of such problems
regards with finding a vertex partition of a graph G into two sets such that both sets satisfy some properties.
A specific example is, for instance, the balanced graph partitioning problem [1]. Moreover, partitions into
two independent sets, two dominating sets, two alliances, among other ones have been widely studied (see
[2, 14]). On the other hand, the partition problem has an enormous range of applications in several areas
like computer engineering or social networks.

A simple yet fundamental observation in domination theory made by Ore [15] is that every graph of
minimum degree at least one contains two disjoint dominating sets. Thus, the vertex set of every graph
without isolated vertices can be partitioned into two dominating sets. Several equivalent results for other
graphs parameters can be found in the literature. For example, a characterization of graphs with disjoint
dominating and total dominating sets is given in [8], [9] and [13].

In this work we consider similar problems for convex dominating sets and geodetic sets. Let D,S be a
convex dominating set and a geodetic set in G, respectively. The sets D and S form a convex dominating-
geodetic partition of G if |D| + |S| = |V(G)|. Moreover, a convex dominating-geodetic partition of G is called
optimal if D is a γcon(G)-set and S is a 1(G)-set. Thus, if G has an optimal convex dominating-geodetic
partition, then γcon(G) + 1(G) = n(G). Notice that there exist graphs G such that γcon(G) + 1(G) > n. For
instance, if G is a cycle graph of even order, then γcon(G) +1(G) = n + 2. Moreover, there are graphs in which
the convex domination number equals its order, for instance, in [12] was presented an infinite family F of
graphs with diameter two and convex domination number equal to its order. Since the geodetic number is
greater than two for every graph G, we have that any graph G ∈ F satisfies γcon(G) + 1(G) ≥ n + 2.

If a graph G has an a partition into a convex dominating set D and a geodetic set S, then we say that G
is a convex dominating-geodetic graph (CD-GDT graph for short). In addition, if |D| = γcon(G) and |S| = 1(G),
then we say that G is an optimal convex dominating-geodetic graph (OCD-GDT graph for short). An example
of an OCD-GDT graph can be a path Pn with at least three vertices, where S = Ω(Pn) is a 1(Pn)-set and
V(Pn) −Ω(Pn) is a γcon(Pn) set. The next remarks are straightforward.

Remark 1.1. If γcon(G) + 1(G) > n, then G is not a CD-GDT graph.

Remark 1.2. If G is a CD-GDT graph, then γcon(G) + 1(G) ≤ n.

We must remark that there are graphs G such that γcon(G) + 1(G) ≤ n and that are not CD-GDT graphs.
For instance, the hypercube graph Q3, which has order 8, satisfies that 1(Q3) = 2 and γcon(Q3) = 4. So
γcon(Q3) + 1(Q3) = 6 < 8. However Q3 is not partitionable into a convex dominating set and a geodetic set.

Clearly, every OCD-GDT graph is a CD-GDT graph and the converse is not necessarily true. As an
example of a graph which is a CD-GDT graph and not an OCD-GDT graph, we can consider the graph
H from Figure 1. The set S = {a, b, c, d, e, f } is a (not minimum) geodetic set in H and V − S is a minimum
convex dominating set of H.
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Figure 1: The graph H is a CD-GDT graph and is not an OCD-GDT graph.

2. Results

The vertex y ∈ V(G) is an extreme vertex in G if the subgraph induced by NG[y] is isomorphic to a
complete graph. Let T (G) be the set of extreme vertices of G. We begin with some almost straightforward
remarks. Let P denotes the property of a graph G such that every non extreme vertex of G is on some x − y
geodesic, where x, y ∈ T (G).

Remark 2.1. If S is a geodetic set, then every extreme vertex belongs to S.

Remark 2.2. If G , Kn, then no extreme vertex belongs to a γcon(G)-set.

Lemma 2.3. If a connected graph G has the property P, then G is CD-GDT graph.

Proof. Let S be a 1(G)-set. From Remark 2.1, every extreme vertex belongs to S. Since G has the property
P, it follows S = T (G). Notice that V − S is a dominating set of G. Now, suppose V − S is not convex. Thus,
for some vertices x, y ∈ V − S, there exists z ∈ S such that z belongs to some x − y geodesic. Since z ∈ S,
we have that z is an extreme vertex, which means xy ∈ E(G). So, z does not belong to a x − y geodesic, a
contradiction.

The example of a graph H from Figure 1 shows that the converse is not true. Graph H is a CD-GDT
graph, the set S = {a, b, c, d, e, f } is a geodetic set and V(G) − S is a convex dominating set, but vertices e, f
are non-extreme vertices and none of them is on any u − v geodesic, where u, v ∈ T (G).

A clique in a graph G is a set of vertices X such that the subgraph G[X] induced by X is isomorphic to a
complete graph. The maximum order of a clique in a graph is the clique number and is denoted by ω(G).

Proposition 2.4. Let G be a connected graph.
(i) If there exists a clique in G which is a dominating set, then G is a CD-GDT graph.

(ii) If there exists an ω(G)-set which is a γ(G)-set, then G is an OCD-GDT graph.

Proof. Let S be a clique which is a dominating set in G. If S ∩ T (G) , ∅, then let A ⊂ S such that A ⊂ T (G)
and let B = S − A. Notice that every vertex of A belongs to every 1(G)-set and also that S − A is still a
dominating set in G. Thus, B is a convex dominating set in G. Since every vertex in B belongs to a u − v
geodesic such that u, v ∈ V(G) − B we have that V(G) − B is a geodetic set. On the contrary, if S ∩ T (G) = ∅,
then S is a convex dominating set and V(G) − S is a geodetic set of G. Thus (i) is proved. Moreover, if S is
an ω(G)-set and a γ(G)-set, then A = ∅, B = S and V(G) − B is a 1(G)-set. Therefore (ii) follows.

2.1. Generalized trees
A cut vertex in G is a vertex x ∈ V(G) such that the number of components of G − {x} is bigger than

the number of components of G. We consider now the family of graphs Gi obtained in the following way.
We begin with a complete graph Kn1 , n1 ≥ 2, and Gi, i ≥ 2, is obtained recursively from Gi−1 by adding a
complete graph Kni , ni ≥ 2, and identifying a vertex of Gi−1 with a vertex in Kni . From now on we say that
a connected graph G is a generalized tree if and only if there is a sequence of complete graphs Kn1 ,Kn2 , ...,Knr

such that Gr � G for some r ≥ 1. Note that if every Kni is isomorphic to K2, then Gr is a tree, which justifies
the terminology used. The next remarks follow immediately from the definition of a generalized tree.
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Remark 2.5. In a generalized tree G every vertex is a cut vertex or an extreme vertex.

Remark 2.6. If D is a convex dominating set of a graph G, then every cut-vertex of G belongs to D.

Proposition 2.7. Every generalized tree different from the complete graph is an OCD-GDT graph.

Proof. Let G be a generalized tree different from the complete graph. Let S be a 1(G)-set and let D be a
γcon(G)-set. From Remark 2.1, every extreme vertex belongs to S and from Remark 2.6, every cut-vertex
belongs to D. From Remark 2.5, S ∪D = V(G). So G is a OCD-GDT graph.

Corollary 2.8. Every tree of order at least three is an OCD-GDT graph.

2.2. Unicyclic graphs
We begin this section with the case of cycle graphs, which are the most simple examples of unicyclic

graphs.

Lemma 2.9. Cycle graphs are not CD-GDT graphs.

Proof. If n = 3, then γcon(Cn) = 1 and 1(Cn) = 3. So, γcon(Cn) + 1(Cn) = 4 > 3 = n and the result follows
from Remarkss 1.1 and 1.2. If n = 4, then γcon(Cn) + 1(Cn) = 4 = n. Nevertheless, there is no convex
dominating set D of Cn such that V − D is a geodetic set. If n = 5, then γcon(Cn) = 3 and 1(Cn) = 3. So,
γcon(Cn) + 1(Cn) = 6 > 5 = n. Finally, if n ≥ 6, then γcon(Cn) = n and 1(Cn) ≥ 2. So, γcon(Cn) + 1(Cn) > n and
again, from Remarks 1.1 and 1.2, we are done.

From now on we shall denote by Gt, a unicyclic graph different from a cycle whose unique cycle Ct has
vertex set {u0,u1, ...,ut−1}with t ≥ 3 an ui ∼ ui+1, for every i ∈ {0, ..., t− 1}. From now on, operations with the
subindex i are done modulo t. If there exists j ∈ {0, ..., t − 1}, such that for every ui ∈ {u j,u j+1, ...,u j+b t

2 c−1},
the vertex ui has degree two in Gt, then we call Gt as a not balanced unicyclic graph. Otherwise, we say that
Gt is a balanced unicyclic graph.

Lemma 2.10. Let Gt be a unicyclic graph different from a cycle and t ≥ 4. Then,

(i) Ω(Gt) is a 1(Gt)-set if and only if Gt is a balanced unicyclic graph.
(ii) If Gt is not a balanced unicyclic graph, then every 1(Gt)-set D has the form D = S ∪Ω(Gt), where S ⊂ V(Ct)

and |S| ≤ 2.

Proof. Suppose Gt is a balanced unicyclic graph. Let X be the set of vertices in V(Ct) having degree greater
than two. It is clear that |X| ≥ 2. Now, for every vertex x ∈ X, let Ux ⊂ Ω(Gt) such that for every
ux ∈ Ux, d(ux, x) = minx′∈V(Ct){d(ux, x′)}. Let v be a vertex of Gt. If v ∈ V(Ct), then since Gt is a balanced
unicyclic graph, there exist two distinct vertices a, b ∈ X such that d(a, b) ≤

⌊
t
2

⌋
and d(a, b) = d(a, v) + d(v, b).

Thus, there exist two vertices ua ∈ Ua and ub ∈ Ub such that d(ua,ub) = d(ua, a) + d(a, b) + d(b,ub) =
d(ua, a) + d(a, v) + d(v, b) + d(b,ub) = d(ua, v) + d(v,ub) and, as a consequence, v ∈ I[ua,ub]. On the other hand,
if v < V(Ct), then let y ∈ V(Ct) and uy ∈ Uy such that v ∈ I[y,uy]. Then for any vertex w ∈ X such that w , y,
there exists a vertex uw ∈ Uw such that v ∈ I[uy,uw]. Therefore, Ω(Gt) is a geodetic set in Gt. Finally, since
every geodetic set of a graph contains all their end-vertices we obtain that Ω(Gt) is a 1(Gt)-set.

Now, let Gt be a unicyclic graph different from a cycle such that 1(Gt) = |Ω(Gt)|. Notice that the only
1(Gt)-set S of Gt is Ω(Gt). So, S ∩ V(Ct) = ∅. Let V(Ct) = {u0,u1, ...,ut−1} where ui ∼ ui+1 (operations with
the subindex i is done modulo t), for every i ∈ {0, ..., t − 1}. Suppose Gt is not a balanced unicyclic graph.
Thus, there exists j ∈ {0, ..., t − 1} such that for every ui ∈ {u j,u j+1, ...,u j+b t

2 c−1}, ui has degree two in Gt.
Moreover, every ui ∈ {u j,u j+1, ...,u j+b t

2 c−1} satisfies ui < I[S], which is a contradiction. Therefore, Gt is a
balanced unicyclic graph and the proof of (i) is completed.

To prove (ii), let j ∈ {0, ..., t − 1} such that for every ui ∈ {u j,u j+1, ...,u j+b t
2 c−1}, ui has degree two in Gt. We

can suppose without loss of generality that j = 0 and that |d(u0,w1)− d(u
b

t
2 c−1,w2)| ≤ 1 where w1,w2 ∈ V(Ct)
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are the nearest vertices to u0,ub t
2 c−1 in Ct, respectively, having degree greater than two in Gt. Since every

ul − uk geodesic, l, k < {0, ...,
⌊

t
2

⌋
− 1}, is formed by vertices from V(Ct) − {u0,u1, ...,ub t

2 c−1} we have that at

least one vertex of the set {u0,u1, ...,ub t
2 c−1} must belong to a 1(Gt)-set. Now, if

⌊
t
2

⌋
is even, then we take

S = {u
b

t
2 c−1,ub t

2 c
}. On the contrary, if

⌊
t
2

⌋
is odd, then we take S = {u

b
t
2 c
}. Since d(u j,w1) ≤

⌊
t
2

⌋
− 1 and

d(u j+b t
2 c−1,w2) ≤

⌊
t
2

⌋
− 1, it is straightforward to observe that Ω(Gt)∪ S is a geodetic set in Gt. If Ω(Gt)∪ S is

not a 1(Gt)-set, then Ω(Gt) ∪ S contains a 1(Gt)-set X such that Ω(Gt) ⊂ X and X ∩ V(Ct) , ∅. Therefore, the
proof of (ii) is completed.

Note that the lemma above leads to the following result.

Corollary 2.11.

(i) In every balanced unicyclic graph Gt, Ω(Gt) is the unique 1(Gt)-set.
(ii) If Gt is not a balanced unicyclic graph, then every 1(Gt)-set S satisfies 1 ≤ |S ∩ V(Ct)| ≤ 2 and S − Ω(Gt) =

S ∩ V(Ct).

Notice that if t = 3 in a unicyclic graph Gt, then G3 is a generalized tree. Thus, from Proposition 2.7,
we obtain that G3 is an OCD-GDT graph. From now on we will study unicyclic graphs Gt according to the
length t of the unique cycle Ct of Gt.

Theorem 2.12. Let t = 4.

(i) If Gt is not a balanced unicyclic graph, then Gt is a CD-GDT graph.
(ii) If Gt is a balanced unicyclic graph, then Gt is an OCD-GDT graph.

Proof. If G4 is not a balanced unicyclic graph, then there exist two consecutive vertices v,w of C4 such that
they have degree two. Then S = Ω ∪ {v,w} is a geodetic set of G4 but S is not a 1(G4)-set. Since V − S is a
convex dominating set of G4, we obtain that G4 is a CD-GDT graph and (i) is proved.

Now, if G4 is a balanced unicyclic graph, then it is clear that Ω(G4) is a 1(G4)-set and V(G4) −Ω(G4) is a
γcon(G4)-set. Thus (ii) follows.

Theorem 2.13. Let t = 5.

(i) If Gt is a balanced unicyclic graph, then Gt is an OCD-GDT graph.
(ii) If Gt is not a balanced unicyclic graph and there is only one vertex in Ct with degree greater than two, then Gt

is an OCD-GDT graph.
(iii) If Gt is not a balanced unicyclic graph and there is more than one vertex in Ct with degree greater than two,

then Gt is a CD-GDT graph.

Proof. If G5 is a balanced unicyclic graph, then it is clear that Ω(G5) is a 1(G5)-set and V(G5) − Ω(G5) is
a γcon(G5)-set. Thus (i) follows. Now, if G5 is not a balanced unicyclic graph, then there exist at least
two consecutive vertices v,w of Ct such that they have degree two. Moreover, if there is only one vertex
in C5 with degree greater than two, then S = {v,w} ∪ Ω(G5) and D = V(G5) − S form an optimal convex
dominating-geodetic partition of G5 and (ii) follows. On the contrary, if there is more than one vertex in C5
with degree greater than two, then S = {v,w}∪Ω(G5) and D = V(G5)−S form a convex dominating-geodetic
partition of G5 which is not optimal and (iii) follows.

Theorem 2.14. Let t ≥ 6. Then a unicyclic graph Gt is an OCD-GDT graph if and only if Gt is a balanced unicyclic
graph.
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Proof. If Gt is a balanced unicyclic graph, then by Corollary 2.11 (i) we have that the only 1(Gt)-set is Ω(Gt).
Also, notice that V(Gt)−Ω(Gt) is a γcon(Gt)-set. Thus, Gt is an OCD-GDT graph. On the other hand, suppose
Gt is an OCD-GDT graph. So, Gt contains an optimal convex dominating-geodetic partition given by the
convex dominating set D and the geodetic set S. If Gt is not a balanced unicyclic graph, then there exists
j ∈ {0, ..., t − 1} such that for every ui ∈ {u j,u j+1, ...,u j+b t

2 c−1}, ui has degree two in Gt. Also, by Corollary 2.11
(ii), every 1(Gt)-set S contains a vertex ul ∈ {u j,u j+1, ...,u j+b t

2 c−1} ⊂ V(Ct) such that at most one of its two
neighbors, say ul−1, is in S. Since t ≥ 6, we have that the ul−2 −ul+1 geodesic contains the vertices ul−1,ul ∈ S.
Thus, V(Gt) − S is not convex. Similar arguments can be described for each 1(Gt)-set, which leads to a
contradiction since Gt is an OCD-GDT graph. Therefore, Gt is a balanced unicyclic graph.

Theorem 2.15. If t ≥ 6 and Gt is not a balanced unicyclic graph, then Gt is not a CD-GDT graph.

Proof. By using similar arguments to the proof of Theorem 2.14, we obtain that for every 1(Gt)-set S, V(Gt)−S
is not convex. Moreover, if we add more vertices of the cycle to the set S, in order to achieve the convexity
for V(Gt) − S, then V(Gt) − S is not dominating. So, Gt does not contain any convex dominating-geodetic
partition and we are done.

2.3. Product graphs

Next we study some different kind of product graphs. Given two graphs G and H with set of vertices
V1 = {v1, v2, ..., vn1 } and V2 = {u1,u2, ...,un2 }, respectively, the Cartesian product of G and H is the graph
G�H = (V,E), where V = V1 × V2 and two vertices (vi,u j) and (vk,ul) are adjacent in G�H if and only if
(vi = vk and u j ∼ ul), or (vi ∼ vk and u j = ul). Given a set S of vertices of G�H, the projection of S over G is
the set PG(S) = {u ∈ V(G) : (u, x) ∈ S for some x ∈ V(H)}. The following results will be useful to prove our
results.

Lemma 2.16. [11] Let G and H be connected graphs. A subset C of V(G�H) is a convex dominating set in G�H if
and only if C = C1 × C2 and

(i) C1 is a convex dominating set in G and C2 = V(H), or
(ii) C2 is a convex dominating set in H and C1 = V(G).

Lemma 2.17. [3, 10] Let G, H be a connected graphs of order greater than two. If S1 and S2 are geodetic sets in G
and H, respectively, then S1 × S2 is a geodetic set in G�H and S1 × S2 is not a 1(G�H)-set.

From the result above, it is deduced that if S is a geodetic set of a graph G, then for any graph H, the set
S × V(H) is a geodetic set in G�H and it is not a 1(G�H)-set. This observation together with Lemmas 2.16
and 2.17 lead to the following results.

Proposition 2.18. If the graphs G and H have order at least two and three, respectively, then the Cartesian product
graph G�H is not an OCD-GDT graph.

Proposition 2.19. If G is an OCD-GDT graph or a CD-GDT graph, then for every graph H, G�H is a CD-GDT
graph.

The strong product G � H of the graphs G and H has vertex set equal to the Cartesian product of the
vertex sets of the factors. Two distinct vertices (vi,u j) and (vk,ul) of G�H are adjacent if and only if (vi = vk
and u j ∼ ul), or (vi ∼ vk and u j = ul), or (vi ∼ vk and u j ∼ ul). The following results on geodetic sets in strong
product graphs were obtained in [4].

Lemma 2.20. [4] If P is a shortest (a, b)− (c, d) path in a strong product graph G�H such that dG�H((a, b), (c, d)) =
dG(a, b) = p, then the projection of P over the graph G is a shortest a − c path of length p.

Lemma 2.21. [4] For any two graphs G and H, min{1(G), 1(H)} ≤ 1(G �H) ≤ 1(G)1(H).
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Lemma 2.22. [4] For any trees T1 and T2 with l1 and l2 leaves respectively, 1(T1 � T2) = l1 · l2. Moreover, the only
geodetic set of T1 � T2 is formed by vertices (x, y) such that x and y are leaves in T1 and T2, respectively.

Theorem 2.23. The strong product graph T1 � T2 of two trees T1 and T2 is a CD-GDT graph.

Proof. From Lemma 2.22, the only geodetic set of T1 � T2 is formed by the set of vertices L = L1 × L2 where
L1 and L2 are the set of leaves of T1 and T2, respectively. Since every vertex in L is an extreme vertex we
have that T1 � T2 satisfies property P. Thus, by Lemma 2.3, we obtain that T1 � T2 is a CD-GDT graph.

Theorem 2.24. If G and H are connected graphs satisfying one of the premises of Proposition 2.4 (i) or (ii), then
G �H is a CD-GDT graph.

Proof. The result is straightforward, since the product A × B of two cliques A and B being dominating sets
in G and H, respectively, is also a clique which is a dominating set in G � H. Thus the Proposition 2.4 (i)
itself leads to the result.

A rooted graph is a graph in which one vertex is labeled in a special way so as to distinguish it from
other vertices. The special vertex is called the root of the graph. Let G be a labeled graph on n vertices.
Let H be a sequence of n rooted graphs H1, H2,...,Hn. The rooted product graph G(H) is the graph obtained
by identifying the root of Hi with the ith vertex of G [5]. In this paper we consider a particular case of
rooted product graphs, where H consists of n isomorphic rooted graphs [16]. More formally, assuming
that V(G) = {u1, ...,un} and that the root vertex of H is v, we define the rooted product graph G ◦v H = (V,E),
where V = V(G) × V(H) and

E =

n⋃
i=1

{(ui, b)(ui, y) : by ∈ E(H)} ∪ {(ui, v)(u j, v) : uiu j ∈ E(G)}.

Remark 2.25. Let G be a connected graph of order n ≥ 2 and let H be a non trivial graph. If v belongs to at least one
γcon(H)-set, then γcon(G ◦v H) = nγcon(H).

Theorem 2.26. Let G be a connected graph of order n ≥ 2 and let H be a non trivial graph. Let v be a vertex of H.

(i) If v belongs to a 1(H)-set, then 1(G ◦v H) = n(1(H) − 1).
(ii) If v does not belong to any 1(H)-set, then 1(G ◦v H) = n · 1(H).

Proof. Let V = {u1,u2, ...,un} be the vertex set of G. Suppose first v belongs to some 1(H)-set A and let
B =
⋃n

i=1({ui} × (A − {v})). We shall prove that B is a geodetic set of G ◦v H. Let (ui, y) < B. If y , v, then
there exist vertices a, b ∈ A such that x ∈ IH[a, b]. So, if a, b , v, then (ui, y) ∈ IG◦vH[(ui, a), (ui, b)]. On the
contrary, suppose a = v. In this case, for any vertex u j ∈ V, j , i, and any vertex c ∈ A − {v} we have that
(ui, y) ∈ IG◦vH[(u j, c), (ui, b)]. On the other hand, if y = v, then for any vertex c ∈ A − {v} and any vertex
u j ∈ V, j , i, we have that (ui, y) ∈ IG◦vH[(u j, c), (ui, b)]. Therefore, B is a geodetic set in G ◦v H and we obtain
1(G ◦v H) ≤ n(1(H) − 1).

Now, let S be a 1(G◦vH)-set and let U be the vertex set of H. Now, for every i ∈ {1, ...,n}, let Si = S∩({ui}×U).
Let the vertex (ui, x) < Si, x , v. So, (ui, x) ∈ IG◦vH[(ui, a), (u j, b)] for some ui,u j ∈ V and a, b ∈ U. If ui , u j,
then (ui, x) ∈ IG◦vH[(ui, a), (ui, v)]. Thus we obtain that Si ∪ {(ui, v)} is a geodetic set of a graph induced by
{ui} ×U and also, 1(H) ≤ |Si| + 1. Therefore, 1(G ◦v H) = |S| =

∑n
i=1 |Si| ≥ n(1(H) − 1) and the (i) is proved.

Now on suppose v does not belong to any 1(H)-set. Let A be a 1(H)-set. Hence, it is straightforward to
prove that B =

⋃n
i=1({ui}×A) is a geodetic set in G◦v H and we obtain 1(G◦v H) ≤ n ·1(H). Suppose now that

1(G ◦v H) < n · 1(H) and let S be a 1(G ◦v H)-set. So, there exists a set Si = S∩ ({ui} ×U) such that |Si| < 1(H).
Nevertheless Si ∪ {(ui, v)} is a geodetic set in a graph induced by {ui} × U � H with |Si ∪ {(ui, v)}| = 1(H), a
contradiction. Therefore 1(G ◦v H) = n · 1(H) and (ii) is proved.

The results above lead to the conclusion that no vertex of the graph G belongs to any 1(G ◦v H)-set.
Therefore, we deduce the following result.
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Theorem 2.27. Let G be a connected graph of order greater than one and let H be a non trivial graph with vertex set
U. Let v ∈ U belonging to some γcon(H)-set.

(i) If v belongs to a 1(H)-set S and U − S ∪ {v} is a γcon(H)-set, then G ◦v H is an OCD-GDT graph.
(ii) If v does not belong to any 1(H)-set and H is an OCD-GDT graph, then G ◦v H is an OCD-GDT graph.

Corollary 2.28. Let G be a connected graph of order greater than one and let T be a non trivial tree with vertex set
U. Then for every v ∈ U, G ◦v T is an OCD-GDT graph.

The corona product G �H is defined as the graph obtained from G and H by taking one copy of G and
n = |V(G)| copies of H and joining by an edge each vertex from the ith-copy of H with the ith-vertex of G.

Remark 2.29. Let G be a connected graph of order n ≥ 2 and let H be any graph. Then, γcon(G�H) = n. Moreover,
the only minimum convex dominating set of G �H is formed by the vertex set of G.

The following result was obtained in [18].

Lemma 2.30. [18] Let G be a connected graph of order n ≥ 2 and let H be any graph of order n1. Then 1(G�H) = n·n1
if and only if H is a graph in which every connected component is isomorphic to a complete graph.

Remark 2.29 and Lemma 2.30 lead to the following result.

Theorem 2.31. Let G be a connected graph of order n ≥ 2 and let H be any graph. Then G�H is always a CD-GDT
graph. Moreover, G � H is an OCD-GDT graph if and only if H is a graph in which every connected component is
isomorphic to a complete graph.
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