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Generalizations of Bell Number Formulas of Spivey and Mezd
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*Department of Mathematics, University of Tennessee, Knoxville, TN 37919, USA

Abstract. We provide g-generalizations of Spivey’s Bell number formula in various settings by considering
statistics on different combinatorial structures. This leads to new identities involving g-Stirling numbers
of both kinds and g-Lah numbers. As corollaries, we obtain identities for both binomial and g-binomial
coefficients. Our results at the same time also generalize recent r-Stirling number formulas of Mez6. Finally,
we provide a combinatorial proof and refinement of Xu’s extension of Spivey’s formula to the generalized
Stirling numbers of Hsu and Shiue. To do so, we develop a combinatorial interpretation for these numbers
in terms of extended Lah distributions.

1. Introduction

Let S(n, k) denote the Stirling number of the second kind and B(n) = Y._, S(n, k), the n-th Bell number.
In 2008, Spivey [23] proved the identity

n

B(m+n):z

m
i=0 j=0

j”—i(’:)S(m, )BG),  mn>0, 1)

by an elegant combinatorial proof. Since then several extensions have been given of (1) involving various
generalizations of the Stirling and Bell numbers (see [1, 10, 13, 19, 27]).

One such extension [19] involves the r-Stirling numbers [2] of both kinds and the r-Bell numbers [18],
which count classes of permutations or partitions in which the elements 1,2, ..., r belong to distinct cycles
or blocks. Let ¢(n,k) and S”(n, k) denote the r-Stirling numbers of the first and second kind, respectively,
and B"(n) = Yo S®(n, k) denote the r-Bell number. Mez6 [19, Theorem 2] proved the following recursive
formulas satisfied by these numbers.

Theorem 1.1 (Mez®6). If m,n,r >0, then

BO(m + n) = Z Z(] + r)”_i(?)s(r)(M, 7B(@) @
i=0 j=0
and
17 = Y Y e+ 1, ©
i=0 j=0
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Here, a’ = a(a+1)---(a+b— 1) if b > 1 denotes the rising factorial, with a° = 1. Note that (2) reduces to (1)
when r = 0.

In the next section, we provide g-generalizations of formulas (2) and (3) by considering statistics origi-
nally due to Carlitz [5] on set partitions and permutations and restricting those statistics to the substructures
enumerated by the r-Stirling numbers of the first and second kinds (see (7) and (27) below). Some special
cases of these identities are noted. We also consider an analogous r-Lah number (see [20]) that counts the
class of Lah distributions (i.e., set partitions where the order matters within a block, for example, see [15])
in which the elements 1,2, ..., r belong to distinct blocks. By considering an earlier statistic of Garsia and
Remmel [8], we obtain g-extensions of an r-Lah number analogue of identities (2) and (3). This leads to an
apparently new identity involving g-binomial coefficients.

Xu [27] considered another type of extension of Spivey’s result in terms of the generalized Stirling
numbers of Hsu and Shiue [12], which are denoted by S(n,k; a, B, 7). It was shown in [27] by algebraic
methods that

nom n—i—1
Buonapr(®) = ) ) (?)’” SGm, j;a, B, 7B, () [ [ (m+Oa+jp),  mn=0, 4)
=0

i=0 j=0

where B4 5,(x) = Yo Sn,k;a, B, r)xk. The numbers S(n, k; a, B, 1) are seen to generalize a variety of com-
binatorial arrays, including Stirling numbers of both kinds, Lah numbers, and binomial coefficients. For
example, Spivey’s formula (1) would correspond to the x = § = 1 and a = r = 0 case of (4). Here, we
develop a combinatorial interpretation of the numbers 5(n, k; @, §, r), which have primarily been considered
from an algebraic standpoint, as weighted sums over an extension of the set of Lah distributions. Using
this interpretation, we are then able to show that there is a one-to-one correspondence between structures
enumerated by both sides of (4).

We now recall some basic terminology and notation. We will follow the convention that empty sums
assume the value zero and empty products, the value one. By a partition of the set [n] = {1,2,...,n}, we
will mean a collection of non-empty, disjoint subsets, called blocks, whose union is [n] (see, e.g., [16]). The
number of partitions of [n] is given by B(n), with S(n, k) counting those having exactly k blocks. If m and
n are positive integers, then let [m,n] = {m,m +1,...,n} it m < n, with [m,n] = @ if m > n. If g is an
indeterminate, thenn, = 1+ g +---+¢" 'if n > 1, with 0; = 0. If n > 1, then the g-factorial is defined as

ng! = [, iy if n > 1, with 0,! = 1. The g-binomial coefficient (Z)q is given by }(‘],(Z—‘L‘,()‘q, if 0 < k < n, with
Z)q = 1if k = 0 for all integers n, and will be assumed to be zero otherwise.

2. g-Analogues of Spivey’s Formula

In this section, we find g-analogues of identity (1) and the formulas in Theorem 1.1 which come about
from considering certain statistics on set partitions, Lah distributions, and permutations.

2.1. g-Stirling identities of the second kind

We will need the following terminology and notation. Let S,(n, k) (see, e.g., [25]) be defined by the
recurrence
Sy, k) =g'S,(n— 1L,k—1) +k,Sg(n —1,k),  mk>1,

with S,(n,k) = 6,x if n = 0 or k = 0. Note that S,(n, k) = q(g)gq(n, k), where Eq(n, k) was considered by Carlitz
[3,4]. Let P, denote the set of partitions of [#] into k blocks and P, = Ur_o Pk the set of all partitions of [n].

Given a partition 7 = B1/B;/ - -+ /Bx € Py such that min By < min B, < --- < min By, let w(n) = Zlle(i— 1)|Bi]
(see, e.g., [5, 16, 25]). It follows from the defining recurrence for S,(1, k), upon considering the position of
the element n within a member of $,,, that

S,(n,k) = Z D, nk>0.

TEP, k
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If n > 0, then let By(n) = Y.i_, S4(11, k) denote the corresponding g-Bell number [16, 25].
Givenr > 0, let P(r) denote the set of partitions of [# + r] into k + r blocks in which the elements 1, 2, .

belong to distinct blocks and let P¢) = Up_ P(r) The respective cardinalities of P( ) and P are known as

the r-Stirling and r-Bell numbers (see [2, 18]) and are denoted here by S®(n, k) and B ) (n), respectively.
We now g-generalize the numbers S®(n, k) and B”(n) by letting

SO, k) = Z ™, nk>0,

(1)
WEPM(

and B{(n) = ¥, S (n, k). Note that S (1, k) and B\” () reduce to S,(n, k) and B,(n) when r = 0.
Considering the number, 7, of elements of [r + 1,7 + 1] that do not lie in a block containing an element
of [r] within a member of P%{ yields the relation

SO(n, k) = Zq” - ( )Sq(i,k), r> 0. (5)

The sequences Sf]r)(n, k) and B,({)(n) satisfy the following recurrences. In this proof and those in later
sections, we will denote the set [m + 7+ 1,m + n +r] by L.

Theorem 2.1. If m,n,r > 0, then

r iy i(j+r)7 4 n—if o ; : ;
SVm+ k) =Y Y g0+ 11 (i)sgkm, DSyl k = ) (6)
i=0 j=0
and
r v i(j+)r 4 n—i[ M) . .
B (m +n) = g + 71! (i)S;)(m,])Bq(z). 7)
=0 ]:0

Proof. The second identity follows from the first by summing over k or by allowing partitions to contain any
number of blocks in what follows. To show (6), we will argue that the (i, j) term of the sum gives the weight
(with respect to the w statistic) of all members of pU )+n , in which the elements of [m + r] occupy exactly
j + r blocks, with n — i elements of I also belonging to those blocks. Note that within such partitions, there
are S; Y(m, J) possibilities (upon briefly regarding the indeterminate g as a positive integer) for the partition
comprising the elements of [m + r] and (") choices for the elements of I that are to go in this partition. The
factor [j + r]g"i then accounts for the placement of these n —i elements as there are 1+ ¢+ + ¢4/ = [j+7],
possibilities for each element (insertion into the ¢-th block from the left gives a factor of ‘! for each
1 < € < j+ 7). The remaining i elements are then to be partitioned into k — j additional blocks. Note that
each of these blocks is translated to the right by j + r positions, which implies that there are g'V*)S,(i, k — j)
possibilities for the remaining i elements. [J

Remark 2.2. Letting r = 0 in (7) recovers the identity of Katriel [13] (shown by operator methods) and thus we have
obtained a combinatorial proof for it. Letting q = 1 in (7) gives formula (2) of Mez0.

If P is a statement, then let x(P) = 1 or 0 depending on whether P is true or false. Given n > 1, let
a;j = x(jis odd) + x(j is even and i = n)

and
Bij = x(jis even) + x(jis odd and i = n)

for positive integers i and j. We now state some binomial coefficient identities which follow from the prior
theorem.
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Proposition 2.3. If m,n,k > 1, then

m+n—k—=1\_ N1\ aen(n\(m - L2l 1\(i-k+Tj/21-1

( k-1 )_i=o]‘=oal,]( ) ](i)( m—j )( i=2k+j ), ®

man—k\ Ny afn\(m= 120 =1 (i—k+1j/2)

[ )RR O )

m+n-—k _ R G+ [T m—T[j2N\[i —k+T[j/21 -1

() ()
and

m+n—k _ ! w a (i+1)('+1)n m—|']/21 l_k+|_]/2J

( k-1 )_i:O jzoﬁl"( DR m—j Ni-2k+j+1) (a

Proof. To show (8) and (9), we take 4 = —1 and r = 0 in (6). (Indeed, one gets the same result if one takes
any even r as the evaluations at g = —1 are all the same, by (5).) Since m, |;-—1= x(m is odd) and since the
factor [j + r]g‘i is 1 for all j when i = n, we have

Sam+nk=Y Y ai,j(—1>ff(’j)s_1<m, DStk = ), (12)

i=0 j=0
where S_1(n, k) = S,(n, k) l4=—1. From [25, Theorem 4.1], it follows that

S_1(n,k) = (—1)(5)(” - bkizlj - 1), 0<k<n. (13)

(The reader is referred to [21] for a combinatorial proof.) Identities (8) and .(9) now follow from (12) and
(13) by replacing k with 2k and 2k — 1, respectively, and noting the fact () = ({) + (/) + j(¢ — j) for 0 < j < €.
y rep & P Y 8 2 2 )T —] ]

To show (10) and (11), we first take g = =1 and r = 1 in (6) (in fact, one could take any odd r). This gives
SDm +n,k) = Z Z Bi (=1 m, )S_1 (i, k — j). (14)

i=0 j=0

We seek an expression for S(_ll) (n,k). By (5) at g = —1 and (13), we have
= (n\(i- k2] -1
00,0 = YO~ HE ) (15)
i=k

To find S(_ll)(n, k), we make use of the generating function method as described in Wilf [26, Section
4.3]. Let us fix k and calculate the generating function fi(x) := Y., 2, xX", where a, x = (—1)(5)5(_11) (n, k). A
computation gives

_ (=
fk(x) - (1 _ x)l.k/2J+1 N

Thus, we have
lk/2]

. _ n—[k/2] n
Y aux —(—1)"x”‘/21'm—(‘1)k2( Lk/2] )x’

nxk n>k
which implies

(16)

S(}l)(n,k) = (—1)(Z)an/k = (_1)(1“;1)(” - rk/z-l)

Lk/2]
Identities (10) and (11) now follow from (13), (14) and (16), upon replacing k by 2k and 2k—1, respectively. [
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2.2. g-Lah identities

A partition of [n] in which the order of the elements within a block matters is called a Lah distribution.
Let L, x denote the set of all Lah distributions having k blocks. The cardinality of £, is called the Lah
number L(n, k) (see [14]).

We define a statistic on L, as follows. Given 6 € L, represent the contents of each ordered block
by a word and then arrange these words in a sequence Wy, W, ..., Wi by decreasing order of their least
elements. Then replace the commas in this sequence by zeros and count inversions in the resulting single
word to obtain the value inv,(9), i.e.,

inv,(6) = inv(W10W50 - - - Wi_10Wy).

For example, if 6 = {3,2,5},{7,6,8},{1,4} € L, x, then we have invp(é) = 30, the number of inversions in the
word 7680325014.
The statistic inv, is due to Garsia and Remmel [8], who showed

1
Z inv,(8) _ k(k-1) 1<k< 17
6eL T 7 k'(k 1) =E=m ( )
nk

which generalizes the well known formula for L(n, k). For other examples of statistics on L, , see, e.g., [15].
Considering the position of the element # within a member of £, s, one obtains the recurrence

Lyn,k) =g 2Lyn - 1,k-1) + [n+ k-1, Ly(n - 1,k), nk>1,

with L,;(n,k) = 6,xif n =0ork = 0.

We now recall a Lah number analogue of the r-Stirling numbers (see [20]), for which we will provide
a g-generalization. Let .Eg)k denote the set of Lah distributions of [n + 7] into k + r blocks in which the
elements 1,2, ..., 7 belong to distinct blocks and let L") (1, k) = I.E(r;(I Considering the number, i, of elements
in[r+1,r+n] that occupy a block containing a member of [r] yields the relation

n i-1
L0 d =Y T+ 2r)(’Z)L(n —ik), r>0.

i=0 (=0

Let LO(n) = Y1_, LY (n, k).
We g-generalize the numbers L (11, k) and L (1) by letting

LYk =Y q™®,  nkx0,

<L)

and Lf,r) () = Yo Lf;)(n, k). Note that for n > 0, we have L(r)(n k)=0ifk>nork<0.

Define the g-rising factorial by [n]} = TI:Z" i, if m > 1, with [n ]2 =1 for all n > 0. Recall also that the
g-binomial coefficient (Z)q is the distribution function on the set of binary words consisting of k zeros and
n — k ones for the statistic which records the number of inversions [24, Prop. 1.3.17].

The sequences L,(;)(n, k) and L,(;) (n) satisfy the following relations.
Theorem 2.4. If m,n,r > 0, then

n k
r i(j+m+2r)7 n—i| " 7 . . .
LY m +n,k) = Z Z g 4+ 20! (1) LY (m, j)LyGi, k - j) (18)
i=0 j=0 q
and
n k
LG +my =YY gm0 m 4 20y ( ) L (m, )Ly (). (19)
i=0 j=0 q
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Proof. The second identity follows from the first by summing over k. To show (18), suppose that 6 € L(rm ‘
is such that the elements of [m + r] occupy exactly j + r blocks, with nn — i elements of I also lying in these
blocks. Then there are L;r)(m, j) possibilities concerning the placement of the elements of [m+r] and L,(i, k- j)
possibilities for the remaining i elements of I. Note that each of these elements creates an inversion with
every element of [m + r], by the ordering of the blocks, as well as an inversion with each zero that precedes
a block containing a member of [ + r]. Thus, there are (m + 1) + (j + r) = j + m + 2r inversions in all created
by each of these i elements, which accounts for the g'*""+2") factor.

Let S = {a; < ap < --- < a,_;} denote the subset of I whose elements belong to a block of 6 containing at
least one member of [m + r]. We insert the elements of S into the subpartition comprising the members of
[m+r], one at a time in increasing order, starting with a1. Note that there are 1+q+---+g/**2 1 = [j+m+2r],
possibilities concerning the placement of a; since it can be inserted anywhere amongst a sequence consisting
of the letters in [m + r] together with j + r — 1 zeros, with the choice of position creating anywhere from
zero to j +m + 2r — 1 inversions. By similar reasoning, the factor [j + m + 2r + {]; accounts for the choice of
position of the element a1 foreach0 < £ <n—i—1.

Finally, observe that the number of inversions of ¢ (as defined by the inv, statistic) involving a member
of S and a member of I — S is the same as the number of inversions (as defined in the usual sense) in the
binary word w = wiw; - - - w, obtained by setting w, = 1if m+r+{ e Sandw, =0if m+r+ ¢ ¢ S. This
accounts for the (’l’)q factor and completes the proof. [

As a consequence, we obtain the following g-binomial coefficient identity.

Corollary 2.5. Ifm,n,k >0, then

(m+n) (m+n+1) _(m) (k+m+n+1)
k), n . \kJg n q

n k

_ )21 ;+1>( m ) (k + 1) (;{‘ 1,) (m - i) . (20)
=1 j=1 j-1 A n-t q

Proof. Applying (17) to both sides of (18) when r = 0 and m, n,k > 1 (and separating off the i = 0, j = k term
in the sum on the right-hand side) gives

k(k_l)(m+ﬂ)q!(m+n—1) ~ k(k_l)m,,!(k+m+n—1)ql(m_1)
OO\ k-1 ) Kik+m—1),0 \k-1),
n k-1

Z‘ i(j+my+2())+2(5; 1)1‘1 mq'(]+m+n_l_1)‘i (7’[) (m_l) ( i-1 )
= = Joltk = )g!(G + m = 1),! qj—lqk—j—lq’

Multiply this last equation by i replace (! ) with and rearrange factors on both sides. The

ln 14 1 n l) (K4
desired result now follows from noting (é) + (k2] ) = (2) — j(k = j), canceling "*~V factors on both sides, and

finally replacing k with k+ 1 and m withm +1. O

2.3. g-Stirling number identities of the first kind

Let G,  denote the set of permutations of [1] having k cycles and G, the set of all permutations of [11]. The
cardinality of G, is the (signless) Stirling number of the first kind, often denoted c(#, k). In what follows,
we will represent © = C1/Cy/ - -- /Ck € Gy in standard cycle form, i.e., minC; < minC; < --- < min Cy, with
the smallest element written first within each cycle.

We recall a statistic on G, originally considered by Carlitz [5] and later studied [22]. First express
= C1/Cy/ - /Ck € Gpk in standard cycle form. Then erase the internal dividers and count inversions in
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the resulting word. Denote the value so obtained by inv,.(n). For example, if © € G73 has cycles of (5,7, 6),
(3,4,1) and (2), then inv (1) = 3, the number of inversions in the word 1342576. Let

cq(n, k) = Z qi“"f(”), n,k > 0.
T€Gnk
Considering the position of the element 7 relative to the members of [n — 1] gives the recurrence
cg(n, k) = cy(n—1,k=1) + [n —1],cs(n - 1,k), nk>1, (21)
with ¢,(n,k) = 6, if n =0o0rk =0.

Let QZ;{ denote the set of permutations of [n + r] having k + r cycles in which the elements 1,2,...,r
belong to distinct cycles and let G = ugzogf[}k. The cardinality of Q% is given by the r-Stirling number of
the first kind [2], which we denote here by ¢)(1, k). We now consider a g-generalization of ¢’ (11, k) obtained
by letting

c;r)(n, k) = Z g™, n,k>0.

neGy,

The sequence c "(n, k) satisfies the following recurrence relation.

Theorem 2.6. If m,n,r > 0, then

cf;)(m +n,k) = ZZ[m + ] ’( ) (r)(m Neqgli k=) (22)
i=0 j=0
and
n—1 n — i—1
H(1 +[0+m+rl) =Y [m+ r];f( ) H(1 +6,). (23)
(=0 i=0 Yy =0

Proof. For (22), we proceed as in prior proofs and consider the number, n — i, of elements of I that occupy
a cycle containing a member of [m + r]. There are c,({)(m, j) possibilities for the placement of the elements
of [m + r] for some j and ¢,(i, k — j) possibilities for the elements of I not belonging to a cycle containing a
member of [m + r]. Note that there are no inversions between these elements of I and elements of [m + 7],
by the ordering of the cycles. The factors [m + r]g"i and (7)q arise in a similar manner as in the proof of (18)
above, which completes the proof of (22).

Next observe that

n n+r—1
Zc;”(n,k) =[[a+e), r>o0
k=0 {=r

This can be seen combinatorially by considering the positions of elements of [r + 1,7 + n] within a member

of G, Note that there are always 1 + ¢, possibilities for the position of the element £+ 1 forr < £ <r+n-1
given any permissible arrangement of the members of [£]. Thus summing (22) over k gives

(1+¢) ZZ[m+r]" ( ) < (m, j) ﬁ(neq)
=0

m+n+r—1

l=r i=0 j=0
n —n i-1 m
— n—i () 4
- Z[m+r]q (1) [Ta +fq)ch (m, j)
i=0 q ¢=0 j=0

mﬁla + é’q)z m+ ] 1( ) ﬁa +¢,),

q (=0
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which implies (23). Alternatively, using prior reasoning, one can show directly that both sides of (23) give
the total weight with respect to the inv, statistic of all the members of G o

Using (21), one can show that ¢,(1, k) is the (n — k)-th symmetric function in the quantities {14,2,,...,[n—

(1)
q

1],}. Substituting this into (22) gives an explicit recurrence for ¢;’(a, k) in terms of cf,r)(b, j)forb<aandj<k

for a fixed r.

2.4. Further g-identities

We have the following additional recurrence relations satisfied by the sequences of the prior sections.

Theorem 2.7. If m,n,r > 0, then

S;m+r)(n/ k) — i qm(i"'")*'(g)m;_i(;:)sg)(i, k), (24)

i=0
n

L;n1+r) (n, k) = 2 qm(2i+2r+ml)[2m];1i(1;l) L,(;)(i, k), (25)

i=0 1
and

Cz(qm+r)(n/ k) = - qr(n—i)m;—i(ril) Ct(qr)(i’ k). (26)

i=0 q

Proof. The proofs of these identities are similar, so we only show (26) and leave the other two as exercises.
We argue that the right-hand side of (26) gives the total weight with respect to the inv, statistic of all the

)

members of QS’;{” . Consider the number, n — i, of elements of I which belong to a cycle containing a

member of [m]. For these elements, there are m? possibilities. The remaining i elements of I, when taken

(r) (

together with [m + 1,m + ], comprise a member of Ql(rk) and thus there are o i, k) possibilities concerning

their placement. The factor (’f)q arises in much the same way as before since the n — i letters of I belonging

to the first m cycles can create inversions with letters of I that do not. Furthermore, these n — i letters of I
create r(n — i) additional inversions with the members of [m + 1,m + 7], by the ordering of cycles, whence
the factor of ¢'). Summing over all possible i gives (26). [

Further identities may be obtained by summing those in the preceding theorem over k. For example,
summing both sides of (26) over k gives

n-1 n i-1
_ r(n—i).,, n—i n
H(1+[€+m+r]q)—Zq ! (1) [Ta+1e+r,),
=0 i=0 9 £=0
which may be rewritten, upon multiplying both sides by [T/ (1 + [£ + rly), as follows.

Corollary 2.8. Ifm,n,r > 0, then

m+n—1 n

m _ i-1
[Ta+we+n)=Y.Y" q’(”_i)mg_’(:,l) em, ) [T +1¢+ 7). 27)
=0 j q =0

i=0 j=0

Remark 2.9. Taking q = 1 in (27) recovers formula (3) of Mezd.
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3. Combinatorial Proof of a Prior Recurrence

Xu [27] extended Spivey’s recurrence to the generalized Stirling numbers of Hsu and Shiue [12]. Note
that these Stirling numbers have as special cases several earlier generalizations, including those of Carlitz
[6, 7], Gould and Hopper [9], and Howard [11]. The proof given by Hsu and Shiue is algebraic and makes
careful use of exponential generating functions. Here, we provide a combinatorial proof of their result as
well as a further refinement.

To do so, we consider statistics on an extension of the set L, ;. We first recall two statistics on L, ; from
[17].

Definition 3.1. If p € L, and i € [n], then we say that i is a record low of p if there are no elements j < i to the left
of i within its block in A.

For example, if p = {4,1,5},1{8, 3, 6,2},{7} € Lg3, then the elements 4 and 1 are record lows in the first block,
8, 3 and 2 are record lows in the second, and 7 is a record low in the third block for a total of six record lows
altogether. Note that the smallest element within a block as well as the left-most one are always record
lows.

Definition 3.2. Given p € L,, let rec*(p) denote the number of record lows of p which are not themselves the
smallest member of a block. Let nrec(p) denote the number of elements of [n] which are not record lows of p.

We now consider an extension of the set £, = Uy_ £, x consisting of all Lah distributions of size n. We
assume throughout the remainder of this section that the blocks within a member of £, are arranged from
left to right in increasing order according to the size of the smallest element.

Definition 3.3. Let us call an element i special within p € L, ifi = 1 or if i > 2 and the following two conditions
are satisfied:

(1) i is not the smallest element of a block of p, and
(2) all elements of [i — 1] occur to the left of i in a left-to-right scan of the contents of the blocks of p.

Definition 3.4. Let L denote the set obtained from L, by circling some subset (possibly empty) of the special
elements within each member of Ly, where the element 1 can be circled only if it starts a block.

We will refer to the members of L}, as extended Lah distributions. Let us denote a circled element i within
a block by @ Note that conditions (1) and (2) in Definition 3.3 above imply that @ cannot start a block
ifi > 2, with @ always starting a block when it occurs. Otherwise, elements may be ordered in any way
within blocks such that conditions (1) and (2) are met regarding the positions of any circled elements.

We consider a refinement of the set L.

Definition 3.5. By a true block within A € L;,, we will mean a block not containing @ when 1 is circled and any
block of A when it is not. Let L;  denote the subset of L, whose members contain exactly k true blocks.

For example, we have

= 1(D,3,@), 14,(3),7,113,6,8,(9)),112,11,10,14,(15)) € L5,

where the first block is not true and the elements 8 and 14 are special but not circled. By the definitions, we
have £ = U}_ .E . Furthermore, | £ || = n! since such partitions contain a single block starting with @
with each element i,1> 2, either unc1rcled and directly following some member (possibly circled) of [i — 1]
or circled and occurring in the i-th position from the left. Note that £, x corresponds to the subset of £} | in

which no special elements are circled.
We now extend the rec” and nrec statistics to £; , by disregarding any circled members of [1] in true
blocks when obtaining the values for rec* and nrec. That is, within each true block, we only consider the
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sublist comprising the uncircled elements in the block when determining the contribution of that block
towards rec* or nrec. For a block containing @, we consider the sublist of uncircled elements with 1

written at the front of it. That is, for a block containing @, we require that it contribute zero towards rec*
and contribute p towards the nrec value, where p denotes the number of uncircled elements in the block.

Note that whether or not an uncircled element within a true block is a record low is independent of any
circled elements belonging to the block since special elements greater than one cannot start blocks. Given
A€ L;/k, let circ(A) denote the number of circled elements of A.

Definition 3.6. If A € L; , then define the weight of A by
ZU(A) — anrec(/\)ﬁrec*()\)rcirc(/\).

For example, if A € .£15 5 is as above, then we have nrec(A) = 4 as there is an uncircled element that is not a
record low in each block (namely, 3,7, 8 and 14), rec*(A) = 3 (corresponding to 13, 12 and 11) and circ(A) = 5,
which implies w(A) = a*g*7.
We now recall the generalized Stirling numbers of Hsu and Shiue [12]. Given a non-negative integer k
and increment 9, let
)% = x(x—0)---(x—kO+6), k>1,

with (x)®9 = 1. If n, k and r are non-negative integers, then the numbers S(n,k; a, 8, 7) are defined as the
connection constants in the polynomial identities

" =Y S, k;a, B,r)(x = ). (28)
k=0

Note that S(n, k; a, B, r) reduces to the Stirling number of the second kind S(n,k) whena =r=0and f =1
and to the Lah number L(n, k) whenr =0and —a = = 1.
The following lemma provides a combinatorial interpretation of S(n, k; o, 8, r) as a weighted sum.

Lemma 3.7. Ifn,k, v >0, then

Stk pr) =Y w(d). (29)

AeLls
Proof. Using (28), one can show
Sm,ka,Br)=Sm-1,k-La,pBr)+(@n-1)+pk+rSn-1,ka,p,7), n>1,k>0, (30)

with S(n,k;a,8,v) =0if 0 <n < kand 1 if n = k = 0. Formula (29) now follows by an inductive argument
using (30) upon considering the position of the element n within a member £, for n > 1 (the formula is
easily seen to hold for n = 0, 1). Note that if n occupies its own (true) block, then there areS(n—-1,k-1;a,B,1)
possibilities. On the other hand, if #n occupies any block containing at least one member of [n — 1], then n
adds one to the nrec value if it directly follows some member of [n — 1] within the block (and itself is not
circled, though its predecessor may be circled) and adds one to the rec* value if it comes at the beginning of
a true block containing at least one member of [n — 1] (since in that case it would be a record low that is not
minimal). The final option, which increases circ by one, but leaves the other two statistics unchanged as
well as the number of true blocks, is for # to be circled, which implies that it must occur as the last element
of the right-most block, with this block not a singleton. Combining these last three cases gives the second
term on the right-hand side of (30) and completes the proof. [

Define the generalized Bell polynomial [27] by

n
Brapr(X) = Z St ka,p,rxk,  n>0.
k=0

We now can give a combinatorial proof of the recurrence for B, ,(x) shown in [27].
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Theorem 3.8. If m,n,r > 0, then

n—i—1

Sm+mn,ka,p,r) = Z Z (:,I)S(m, ja, B St k-jap,r) ((m+Oa+jp) (31)
i=0 j=0 (=0
and
nom n—i—1
Bm+n;a,/3,‘r(x) = (:l)xjs(m’ j; a,B, r)Bi;a,ﬁ,r(x) H (m+Oa+ ]ﬁ) (32)
i=0 j=0 =0

Proof. We first show (31). The recurrence is easily verified if m = 0 or n = 0, so we will assume m, 1 > 1. Let
L .(i,]) denote the subset of L7 = whose members A satisfy the following two properties:

(i) the subpartition of A consisting of the elements of [m] forms a member of £ i and

(ii) there are exactly n — i uncircled elements of H = [m + 1, m + n] occurring in the blocks of the subpartition
described in (i) and to the left of any circled elements of H occurring within these blocks.

Note that any circled elements of H lying within the first j true blocks of A (or in the block containing @,

if it occurs) must belong to the j-th true block if j > 1 or to the block containing @ if j = 0. We will show
that the 7, j term in the sum on the right-hand side of (31) gives )’ . £ () w(A), whence the result follows
from summing over all i and j and appealing to Lemma 3.7. ,
Todoso, letus express A € L7 +n,k(i’ j)as A = (0, 7), where o and 7 are smaller extended Lah distributions
defined as follows. The distribution ¢ is obtained by taking the subpartition of A of size m+#n—i consisting of
the elements of [m], together with the 1 — i elements of H described in condition (ii) above. The distribution
T consists of the remaining elements of [m + n] — ¢ and is obtained as follows. If the j-th true block of A

(which we take to be the block containing @ if j = 0) contains no circled elements of H, then 7 is obtained
by taking the last k — j blocks of A, in which case 7 is either empty or all of its blocks are true. Otherwise,
suppose that the j-th block of A contains at least one circled element of H, and let ¢ denote the smallest such
element. In this case, 7 is non-empty and is obtained by letting its first block comprise all of the elements
(in order) to the right of and including (¢) within the j-th block of A and letting the k — j remaining blocks
of A form the true blocks of 7. Note that c is the smallest element of 7 since all letters to the right of c in A
are larger than ¢, since c is circled.

Next observe that given (o, 7) as defined above, one can reconstruct A, and thus the mapping A - (o, 7)
is a bijection. Furthermore, all true blocks of T remain true when 7 is combined with o to form A, with
the values of the nrec, rec* and circ statistics on ¢ and 7 adding to yield the respective values for A. Note
concerning rec* that an uncircled element to the right of @ in the j-th block of A, where c is as described
above, cannot contribute to the rec* value of A since there is at least one element of [m] to the left of @ in
this block. In this case, then the first block of the corresponding 7 is not true and thus contributes zero to
the rec” value of 7. .

Now observe that there are (?)S(m, j; o, B, 1) [T/ ((m + O)a + jB) possibilities for o. To see this, simply
arrange the elements of [m] according to some p € £ J select n — i elements of H in () ways, and then
add them as uncircled elements to p, starting with the smallest. Note that an added element of H to p may
follow any member (possibly circled) of [m], or any previously added element, or come at the beginning of
any of the true blocks of p.

Upon relabeling elements as members in [i], we see that there are S(i, k — j; @, B, r) possibilities for T,
which follows from how the distribution 7 was obtained from A. Since T may be chosen to be any member
of .E;k_]. once o is known, it follows by multiplication that the weight of all members of L] (i, j) is given
by the i, j term of the sum, as desired, which finishes the proof of (31). Summing over k, or allowing 7
to contain any number of true blocks in the preceding argument, gives the x = 1 case of (32). Adding a
variable x marking the number of true blocks yields (32) in general and completes the proof. [
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We remark that formula (32) appears as [27, Theorem 4] with a replaced by —a, while (31) does not seem
to have been previously noted.

Acknowledgement: The author wishes to thank Toufik Mansour and Matthias Schork for useful discussions
and pointing out to him the paper of Mez6 [19].
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